《自动化仪表与过程控制》课程学习资料:Time-Domain Analysis Of Control System

3.Time-Domain Analysis of Control system 2022-2-11
2022-2-11 1 3.Time-Domain Analysis Of Control System

3.1 Introduction Since time is used as an independent variable in most control systems, it is usually of interest to evaluate the time response of the systems In the analysis problem, a reference input signal is applied to a system and the performance of the system is evaluated by studying the response in the time domain The time response of a control system is usually divided into two parts: The transient response and the steady-state response, if c(t) denotes a time response, then, in general, it may be written C(t=c (t+css(t) Where c, (t=transient response 2022-2-11
2022-2-11 2 3.1 Introduction Since time is used as an independent variable in most control systems ,it is usually of interest to evaluate the time response of the systems .In the analysis problem ,a reference input signal is applied to a system ,and the performance of the system is evaluated by studying the response in the time domain.The time response of a control system is usually divided into two parts: The transient response and the steady-state response ,if c(t) denotes a time response ,then ,in general ,it may be written C(t)=ct(t)+css(t) Where ct(t)=transient response

3.2 Typical test signals for time response of control systems e Unlike many electrical circuits and communication systems, The input excitations to many practical control systems are not known ahead of time In many cases the actual inputs of a control system may vary in random fashions with respect to time For the purpose of analysis and design, it is necessary to assume some basic types of input functions so that the performance of a system can be evaluated with respect to this signals By selecting these basic test signals properly not only the mathematical treatment of the problem is systematized, but the responses due to this inputs allow the prediction of the systems performance to other more complex inputs In a design problem performance criteria may be specified with respect to these test signals so that a system may be designed to meet the criteria. To facilitate the time-domain analysis, the following deterministic test signal are often used 2022-2-11 3
2022-2-11 3 3.2 Typical test signals for time response of control systems ¨ Unlike many electrical circuits and communication systems ,The input excitations to many practical control systems are not known ahead of time .In many cases ,the actual inputs of a control system may vary in random fashions with respect to time. ¨ For the purpose of analysis and design ,it is necessary to assume some basic types of input functions so that the performance of a system can be evaluated with respect to this signals .By selecting these basic test signals properly ,not only the mathematical treatment of the problem is systematized ,but the responses due to this inputs allow the prediction of the systems performance to other more complex inputs .In a design problem ,performance criteria may be specified with respect to these test signals so that a system may be designed to meet the criteria. To facilitate the time-domain analysis ,the following deterministic test signal are often used

Test signals r(t) R(S) urpose Impulse r(t)=A(t),t≥0 stability test 0, <0 Step r()=A,t≥0 transient =0,t<0 response test Ramp (t)=A,t≥0 tracking 0,t<0 capability test Parabolic r()=Ar2,t≥0 fast tracking 0.t<0 capability test ∠U∠∠-∠-11 4
2022-2-11 4 Test signals r(t) R(s) Purpose Impulse stability test Step transient response test Ramp tracking capability test Parabolic fast tracking capability test , 0 0, 0 r t A t t t A , 0 0, 0 r t A t t A s , 0 0, 0 r t At t t 2 A s 2 , 0 0, 0 r t At t t 3 2 A s

3.3 First-Order systems o Unit-impulse response of the first-order system may be found by assuming, 1. e, the intensity of the impulse is equal to one, y(s +I(=~1 Ts+1 (3-3-1) y(t=e/r (3-3-2) 2022-2-11 5
2022-2-11 5 3.3 First –Order Systems ¨ Unit-impulse response of the first-order system may be found by assuming , i.e., the intensity of the impulse is equal to one, 1 1 1 1 Y s R s s s 1 t y t e (3-3-1) (3-3-2)

Unit-impulse response of the first-order syst 0.8 t=e/ 0.6 04 02 2 5 timet 2022-2-11 6
2022-2-11 6

Unit-step response of the first-order system may be found by assuming R(s)=1ys as Y R TS+1 zS+1八s)szs+1 y()=1-e (3-3-4 Unit-ramp response of the first-order system may be found by assuming R(s)=1/s2 as Y(S=RI Ts+1 τs+1八s2)s2szs+1 (3-3-5) ()=t-(1-e") (3-3-6) 2022-2-11 7
2022-2-11 7 Unit-step response of the first-order system may be found by assuming Rs 1 s as 1 1 1 1 1 1 1 Y s R s s s s s s Unit-ramp response of the first-order system may be found by assuming as 2 R s 1 s 2 2 2 1 1 1 1 1 1 1 Y s R s s s s s s s 1 t y t t e 1 t y t e (3-3-3) (3-3-4) (3-3-5) (3-3-6)

The error signal is then Q|c(0=-(0)y(02=(-c") (3-3-7) As t approaches the infinity, the error signal approaches t le 2022-2-11 8
2022-2-11 8 The error signal is then 1 t e t r t y t e As approaches the infinity, the error signal approaches , i.e., t e (3-3-7)

3.4 Performance of a second-Order System Let's consider a unity feedback system shown below E(S K R(S) G)= s(s+ p) The output y(s can be found as 2022-2-11 9
2022-2-11 9 3.4 Performance of a Second-Order System Let's consider a unity feedback system shown below. The output can be found as Y s

G(S R K R +ps+ k R +250ns+ (3-3-8 where =√Kz=p/2K n OS 2 2022-2-11 10
2022-2-11 10 2 2 2 2 1 2 n n n G s Y s R s G s K R s s p s K R s s s where n K p 2 K (3-3-8)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动化仪表与过程控制》课程学习资料:The Root Locus Techniques.ppt
- 《自动化仪表与过程控制》课程学习资料:PID调节(英).doc
- 《自动化仪表与过程控制》课程学习资料:Mathematical Foundation.ppt
- 《自动化仪表与过程控制》课程学习资料:Introduction.ppt
- 《自动化仪表与过程控制》课程学习资料:Frequency-Domain Analysis of Control System.ppt
- 《自动化仪表与过程控制》课程学习资料:Three-element drum level control.doc
- 《自动化仪表与过程控制》课程学习资料:APPENDIX IV OPTIMAL CONTROL THEORY.pdf
- 《自动化仪表与过程控制》课程学习资料:Introduction to Modern Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Mathematical Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Feedback Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Essential Control Corretion.pdf
- 《自动化仪表与过程控制》课程学习资料:Control Theory——From Classical to Quantum Optimal, Stochastic, and Robust Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Control system design.ppt
- 《自动化仪表与过程控制》课程学习资料:《自动控制理论》PPT课件 Automatic control system.ppt
- 《自动化仪表与过程控制》课程学习资料:A Comparison of Robustness_Fuzzy Logic,PID, Sliding Mode Control.pdf
- 《自动化仪表与过程控制》课程学习资料:电气设备选择·施工安装·设计应用手册(上、下册,PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料:《电工手册》PDF电子书(共15章).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)电工学重要公式实用手册(PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)传感器通用术语 GB 7665-87.pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)爆炸环境用防爆用电气设备通用要求 GB 3836.1—83.doc
- 上海交通大学:《自动化仪表与过程控制》课程学习资料——过程控制的基本概念 Process Control.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料:高级过程控制 Advanced Topics Li Shaoyuan.ppt
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)学习要点.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验指导书.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)总复习.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)授课计划.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)教学大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电力系统继电保护技术的现状与发展.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电力系统继电保护现状与发展探讨.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电子教案.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第一章 电力系统继电保护概述.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第七章 电力变压器的继电保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第三章 电网的距离保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第九章 母线保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第二章 输电线路的电流电压保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第五章 输电线路的高频保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第八章 发电机的继电保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第六章 自动重合闸.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第四章 输电线路纵联差动保护.pdf