《自动化仪表与过程控制》课程学习资料:The Root Locus Techniques

4. The root Locus Techniques 2022-2-11
2022-2-11 1 4. The Root Locus Techniques

4.1 Introduction A simple method for tracing the roots of the characteristic equation in the complex plane has been bound by r.W. Evans in 1948 and used extensively in control engineering. In this method. called the root locus method the roots of the characteristic equation are plotted for all values(usually from zero to infinity) of a particular system parameter(usually the gain)of our interest. The root locus method enables us to find the closed-loop poles from the open-loop poles and zeros as a parameter changes. Hence, by using the root locus method the designer can predict the effects on the location of the closed loop poles when varying the gain value or adding open-loop poles and/or open-loop zeros 2022-2-11
2022-2-11 2 4.1 Introduction A simple method for tracing the roots of the characteristic equation in the complex plane has been bound by R.W. Evans in 1948 and used extensively in control engineering. In this method, called the root locus method, the roots of the characteristic equation are plotted for all values (usually from zero to infinity) of a particular system parameter (usually the gain) of our interest. The root locus method enables us to find the closed-loop poles from the open-loop poles and zeros as a parameter changes. Hence, by using the root locus method the designer can predict the effects on the location of the closedloop poles when varying the gain value or adding open-loop poles and/or open-loop zeros

4.2 Root Locus Concept The root locus is the path of the roots of the characteristic equation traced out in the complex -plane as a system parameter is changed Consider a unity-feedback closed-loop control system shown below We want to trace the roots of the characteristic equation of the system as the gain varies. The transfer function is R(S K G T(s) 1+ KG(s (4.1) 2022-2-11 3
2022-2-11 3 4.2 Root Locus Concept ¨ The root locus is the path of the roots of the characteristic equation traced out in the complex -plane as a system parameter is changed. ¨ Consider a unity-feedback closed-loop control system shown below. ¨ We want to trace the roots of the characteristic equation of the system as the gain varies. The transfer function is (4.1)

KGis=K 1+j0 d(s) (4.2) This condition may be written into two separate conditions as follows The magnitude condition: kG()=km(-1 (4.3) The angle condition: ∠KG()=±180(2k+1) (4.4) where 毳=0,土1,土2, As an example consider a second-order system shown below 2022-2-11 4
2022-2-11 4 This condition may be written into two separate conditions as follows. The magnitude condition: The angle condition: where . As an example consider a second-order system shown below. (4.2) (4.3) (4.4)

1 5on±jnV1-52=-1八K-1for0≤≤1 (4.5) When the two roots are and notice that when the two roots are poles of open-loop transfer function. As increases we can trace the roots of the characteristic equation on the complex plane using the magnitude and angle condition, i.e KG(s) (46) S+2 ∠G(s)=∠G()=∠1 =±180°(2k+1 sS+ 2) (4.7) 2022-2-11 5
2022-2-11 5 When , the two roots are and . Notice that when , the two roots are poles of open-loop transfer function. As increases, we can trace the roots of the characteristic equation on the complex - plane using the magnitude and angle condition, i.e., 2 1 2 , 1 1 1 for 0 1 n n s s j j K 1 2 K KG s s s 1 180 2 1 2 KG s G s k s s (4.5) (4.6) (4.7)

K 2 K Increasing K 6 K 2 K Increasing □= roots of the closed-lo 00 p K stem X= poles of th open-loop system K 2022-2-1 2 6
2022-2-11 6

et is a root of the characteristic equation Then for this root the angle condition can be written as K ∠s1-∠(s1+2)=-180 s(s+2 =51 s+2 2022-2-11 7
2022-2-11 7 Let is a root of the characteristic equation. Then for this root, the angle condition can be written as 1 1 1 2 180 2 s s K s s s s

The gain condition may be used to find the required value of at the root as K KG()= =1(48) s(s+2 S or K=sN(+2)9 Another example for the root locus of a system for varying a parameter other than gain is introduced Consider a system shown in the figure below 2022-2-11 8
2022-2-11 8 The gain condition may be used to find the required value of at the root as 1 1 1 1 2 2 s s K K KG s s s s s K s1 s1 2 Another example for the root locus of a system for varying a parameter other than gain is introduced. Consider a system shown in the figure below. or (4.8) (4.9)

Another introduced. Consider a system shown in the figure below. example for the root locus of a system for varying a parameter other than gain Is jVK -八R G(5) R(→○ K s(s +a) s1+八K 2022-2-11 9
2022-2-11 9 Another introduced. Consider a system shown in the figure below. example for the root locus of a system for varying a parameter other than gain is

4.3 The root locus construction procedure for General system E(s) R()一 G(s) Y(s) H(S) For the general feedback control system shown above, the closed-loop transfer function is given by T()=-G(s) 1+GH(S) (4.10 2022-2-11 10
2022-2-11 10 4.3 The Root Locus Construction Procedure for General System For the general feedback control system shown above, the closed-loop transfer function is given by 1 G s T s GH s (4.10)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《自动化仪表与过程控制》课程学习资料:PID调节(英).doc
- 《自动化仪表与过程控制》课程学习资料:Mathematical Foundation.ppt
- 《自动化仪表与过程控制》课程学习资料:Introduction.ppt
- 《自动化仪表与过程控制》课程学习资料:Frequency-Domain Analysis of Control System.ppt
- 《自动化仪表与过程控制》课程学习资料:Three-element drum level control.doc
- 《自动化仪表与过程控制》课程学习资料:APPENDIX IV OPTIMAL CONTROL THEORY.pdf
- 《自动化仪表与过程控制》课程学习资料:Introduction to Modern Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Mathematical Control Theory.pdf
- 《自动化仪表与过程控制》课程学习资料:Feedback Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Essential Control Corretion.pdf
- 《自动化仪表与过程控制》课程学习资料:Control Theory——From Classical to Quantum Optimal, Stochastic, and Robust Control.pdf
- 《自动化仪表与过程控制》课程学习资料:Control system design.ppt
- 《自动化仪表与过程控制》课程学习资料:《自动控制理论》PPT课件 Automatic control system.ppt
- 《自动化仪表与过程控制》课程学习资料:A Comparison of Robustness_Fuzzy Logic,PID, Sliding Mode Control.pdf
- 《自动化仪表与过程控制》课程学习资料:电气设备选择·施工安装·设计应用手册(上、下册,PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料:《电工手册》PDF电子书(共15章).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)电工学重要公式实用手册(PDF电子书).pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)传感器通用术语 GB 7665-87.pdf
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)爆炸环境用防爆用电气设备通用要求 GB 3836.1—83.doc
- 《自动化仪表与过程控制》课程学习资料(工业控制系统设计标准)自控设计常用名词术语 Common Terms and Definition for Measurement and Control System Design HG/T 20699-2000.doc
- 《自动化仪表与过程控制》课程学习资料:Time-Domain Analysis Of Control System.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料——过程控制的基本概念 Process Control.ppt
- 上海交通大学:《自动化仪表与过程控制》课程学习资料:高级过程控制 Advanced Topics Li Shaoyuan.ppt
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)学习要点.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)实验指导书.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)总复习.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)授课计划.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)教学大纲.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电力系统继电保护技术的现状与发展.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电力系统继电保护现状与发展探讨.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版)电子教案.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第一章 电力系统继电保护概述.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第七章 电力变压器的继电保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第三章 电网的距离保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第九章 母线保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第二章 输电线路的电流电压保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第五章 输电线路的高频保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第八章 发电机的继电保护.pdf
- 西安石油大学电子工程学院:《电力系统继电保护》课程教学资源(打印版,讲义)第六章 自动重合闸.pdf