浙江大学:《数值分析》课程PPT教学课件(双语版)第五章 特征值与特征向量(幂法 Power Method)(2/2)

Ch 5 Power Method -Deflation Technique >原点平移法/ deflation technique k)=AV(k-l) (@希望2/1越小越好 不妨设41>2≥…≥n,且 块定收敛的速度,特别 是|m =(2+xn) 4-4|=|a-(B+pD)|=|(-p)-B How are we supposed to know where p is? 所以求B特征根收 As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality. Albert Einstein(1879-1955)
Ch.5 Power Method – Deflation Technique ➢ 原点平移法 /* deflation technique */ = − = = n i i k i i k k k A x 1 1 1 ( ) ( 1) 决定收敛的速度,特别 是 | 2 / 1 | 希望 | 2 / 1 | 越小越好。 不妨设 1 > 2 … n,且 | 2 | > | n |。 n 2 1 O p = ( 2 + n ) / 2 思 路 令 B = A − pI ,则有 | I−A | = | I−(B+pI) | = | (−p)I−B | A − p = B。而 ,所以求B的特征根收 敛快。 | | | | | | | | 1 2 1 2 − − p p As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality. -- Albert Einstein (1879-1955) How are we supposed to know where p is?

Ch5 Power method -Inverse Power method >反幂法/ Inverse Power method* 若A有41|2|A2|2…>14n1|,则A1有元 λ1 对应同样一组特征向量。 A1的主特征根<A的绝对值最小的特征根 Q: How must we compute v(+)=A-v()in every step? A: Solve a linear system ay(ktD=v(k) with a factorized 若知道某一特征根λ的大致位置p,即对任意j≠i 思有4-p|<|4-P|,并且如果(-p)存在,则 路可以用反幂法求A-p)的主特征根1(x-p),收 敛将非常快
➢ 反幂法 /* Inverse Power Method */ Ch.5 Power Method –Inverse Power Method 若 A 有| 1 | | 2 | … > | n |,则 A−1 有 对应同样一组特征向量。 1 1 1 1 1 > … n n− A−1 的主特征根 A的绝对值最小的特征根 Q: How must we compute in every step? (k 1) 1 (k ) A + − = A: Solve a linear system with A factorized. (k 1) (k ) A = + 若知道某一特征根 i 的大致位置 p ,即对任意 j i 有| i − p | << | j − p | ,并且如果 (A − pI) −1存在,则 可以用反幂法求(A − pI) −1的主特征根 1/(i − p ) ,收 敛将非常快。 思 路

Ch 5 Power method -Inverse power method Lab 09. Approximating Eigenvalues Approximate an eigenvalue and an associated eigenvector of a given nxn matrix A near a given value p and a nonzero vector=(x,,,n) put There are several sets of inputs. For each set: aIn The 1st line contains an integer100≥n≥0 which21、0n is the size of a matrix. n=-l signals the end of file The following n lines contain the matrix entries in the format shown: The next line contains a real number Tol. which is the tolerance for eigenvalues, and an integer N20 which is the maximum number of iterations. The next line contains an integer n2 m>0 which is the number of eigenvalues to be approximated. Each of the following m lines contains a real number p which is an initial approximation of the eigenvalue, followed by n real number entries of the nonzero vector x=(x1,…,xn The numbers are separated by spaces and new lines. The inputs guarantee that the shifted matrix can be factorized by doolittle method
Ch.5 Power Method –Inverse Power Method Lab 09. Approximating Eigenvalues Approximate an eigenvalue and an associated eigenvector of a given nn matrix A near a given value p and a nonzero vector . Input There are several sets of inputs. For each set: The 1 st line contains an integer 100 n 0 which is the size of a matrix. n = −1 signals the end of file. The following n lines contain the matrix entries in the format shown: The next line contains a real number TOL, which is the tolerance for eigenvalues, and an integer N 0 which is the maximum number of iterations. The next line contains an integer n m > 0 which is the number of eigenvalues to be approximated. Each of the following m lines contains a real number p which is an initial approximation of the eigenvalue, followed by n real number entries of the nonzero vector . The numbers are separated by spaces and new lines. The inputs guarantee that the shifted matrix can be factorized by Doolittle method. n nn n n a a a a a a ... ... ... ... ... ... 1 21 2 11 1 T x x xn ( , ..., ) = 1 T x x xn ( , ..., ) = 1

Ch5 Power Method -Inverse Power Method Output( represents a space) For each p, there must be a set of outputs in the following format The ist line contains the approximation of an eigenvalue printed as in the c printe: fprintf(outfile, %128f\n", lambda ) The 2nd line contains the n entries of the associated eigenvector each entry is printed as in the c fprintf: fprintf(outfile %12. 8f",x); If the method fails to give a solution after N iterations, print the message “ Maximun■ number■of■ iterations■ exceeded.lni If p is just the accurate eigenvalue, print the message printf(outfile,“%12.8f■is■an■ eigenvalue.n”,p); The outputs of two test cases must be seperated by a blank line. Sample Input Sample output 1■2■ 0.62347538 2■3■4 ■1.00000000■■■0.17206558■■-0.65586885■ 3■4■5 0.0000000001■1000 ■■1.0000000is■an■ eigenvalue 0.6■1■1■1 0■1 1■0 0.0000000001■10 1.0■1■1
Ch.5 Power Method –Inverse Power Method Output ( represents a space) For each p, there must be a set of outputs in the following format: • The 1 st line contains the approximation of an eigenvalue printed as in the C printf: fprintf(outfile, "%12.8f\n", lambda ); • The 2 nd line contains the n entries of the associated eigenvector. Each entry is printed as in the C fprintf: fprintf(outfile, "%12.8f", x ); • If the method fails to give a solution after N iterations, print the message “Maximumnumberof iterationsexceeded.\n”. • If p is just the accurate eigenvalue, print the message fprintf(outfile, “%12.8fisaneigenvalue.\n” , p ); The outputs of two test cases must be seperated by a blank line. Sample Input 3 123 234 345 0.00000000011000 1 –0.6111 2 01 10 0.000000000110 1 1.011 –1 Sample Output –0.62347538 1.000000000.17206558–0.65586885 1.00000000isaneigenvalue
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第五章 特征值与特征向量(幂法 Power Method)(1/2).ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第四章 解线性方程组的迭代法 Iterative Techniques for Solving Linear Systems §4 迭代法的收敛性 Convergence of Iterative methods §5 Relaxation Methods.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第四章 解线性方程组的迭代法 Iterative Techniques for Solving Linear Systems §2 线性方程组的误差分析 §3 Jacobi & Gauss-Seidel Iterative Methods.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第四章 解线性方程组的迭代法 Iterative Techniques for Solving Linear Systems §1 向量和矩阵范数.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第三章 解线性方程组的直接法 §2 三角分解法 Matrix Factorization.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第三章 解线性方程组的直接法 §1 Gaussian Elimination – Amount of Computation.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)简介(陈越).ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第一章 误差 Error.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第二章 非线性方程求根 Solutions of Nonlinear Equations.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.8)多元函数的极值及其求法.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.9)二元函数的泰勒公式.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.7)方向导数与梯度.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.6)微分法在几何上的应用.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.5)隐函数的求导公式.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.4)多元复合函数的求导法则.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.3)全微分及其应用.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.2)偏导数.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.1)多元函数的基本概念.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第七章 空间解析几何(7.9)二次曲面.ppt
- 黑龙江八一农垦大学:《工科高等数学》课程教学资源(PPT课件)第七章 空间解析几何(7.8)空间直线及其方程.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第六章 插值 Interpolation §1 拉格朗日多项式 Lagrange Polynomial.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第六章 插值 Interpolation §2 牛顿插值 Newton’s Interpolation §3 厄米插值 Hermite Interpolation §4 Piecewise Polynomial Approximation.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第六章 插值 Interpolation(6-5)三次样条.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第七章 曲线拟合与函数逼近 Approximation Theory §1 最小二乘拟合多项式 L-S approximating polynomials.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第七章 曲线拟合与函数逼近 Approximation Theory §2 正交多项式与最小二乘拟合 Orthogonal Polynomials & Least-Squares Approximatio.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第七章 曲线拟合与函数逼近 Approximation Theory §3 函数的最佳逼近 Optimal Approximation.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第八章 数值积分 Numerical Integration §1Newton-Cotes 公式 Newton-Cotes Formulae.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第八章 数值积分 Numerical Integration §2 复合求积 Composite Quadrature §3 龙贝格积分 Romberg Integration §4 高斯型积分 Gaussian Quadrature.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第九章 常微分方程数值解 Numerical Methods for Ordinary Differential Equations §1 欧拉方法 Euler’s Method §2 龙格 - 库塔法 Runge-Kutta Method §3 收敛性与稳定性 Convergency and Stability.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第九章 常微分方程数值解 Numerical Methods for Ordinary Differential Equations §4 线性多步法 Multistep Method.ppt
- 浙江大学:《数值分析》课程PPT教学课件(双语版)第九章 常微分方程数值解 Numerical Methods for Ordinary Differential Equations §5 微分方程组与高阶方程 Systems of Differential Equations and Higher-Order Equations §6 边值问题的数值解 Boundary-Value Problems.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第二章 一维随机变量及其分布.ppt
- 《小波分析》系列讲座.doc
- 《小波分析》系列讲座1—初见小波.doc
- 《小波分析》列讲座2.doc
- 《小波分析》系列讲座3.doc
- 《小波分析》系列讲座4.doc
- 《小波分析》系列讲座5.doc
- 《小波分析》系列讲座6.doc
- 《小波分析》系列讲座7.doc