《高等数学》课程PPT教学课件(章节知识点)5.4 无限区间上的广义积分

54无限区间上的广义积分 定义52设函数()在区间[a+∞)上连续,任取b>a b 如果极限imn「f(x)dx存在,则称此极限值为f(x)在区间 b→+∞Ja a+2)上的广义积分,记为,()dx即
5.4 无限区间上的广义积分 f (x) ) b a lim ( )d , b b a f x x →+ 存在 则 f (x) [a,+)上的 ( )d , a f x x + 定义5.2 设函数 在区间[a,+ 上连续,任取 > 如果极限 称此极限值为 在区间 广义积分,记为 即

b f(r)dx=lim f(x)dx b→+0Ja 这时称广义积分。f(x)dx存在和收敛,如果上述极限 imnf(x)dx不存在,则称广义积分」f(x)dx不存在 b→+∞Ja 和发散
→+ + = b a b a f (x)dx lim f (x)dx, 这时称广义积分 存在和收敛,如果上述极限 不存在,则称广义积分 不存在 和发散. f x x a ( )d + →+ b b a lim f (x)dx f x x a ( )d +

当f(x)≥0且广义积分。f(x)dx收敛时,则广义积 分f(x)dx可以看成是由曲线y=f(x)及直线x=a,y=0 所围成的向右无限延伸的平面图形的面积,如图5-10 类似地,可以定义函数f(x)在无限区间(-∞,b)和 (-∞,+O)上的广义积分: yf() b b f()dx= lm f(odx, x 图5-10
当 且广义积分 收敛时,则广义积 分 可以看成是由曲线 及直线 所围成的向右无限延伸的平面图形的面积,如图 类似地,可以定义函数 在无限区间( 和 ( 上的广义积分: x = a, y = 0 f (x) 0 f x x a ( )d + f x x a ( )d + y = f (x) 5−10. f (x) − ,b) − ,+) − →− = b b a a f (x)dx lim f (x)dx

f(r)dx= f(x)dx+ f(x)dx, 对于广义积分(x),其收敛的充分必要条件是」f(x 与厂f(xx都收敛 以上三种类型的广义积分,统称为无限区间的广义 积分
对于广义积分 其收敛的充分必要条件是 与 都收敛. 以上三种类型的广义积分,统称为无限区间的广义 积分. + − − + = + c c f (x)dx f (x)dx f (x)dx, + − f (x)dx, f x x c ( )d + f x x c ( )d −

例1求 d 01+x 解 x 01+x b)+∞J01+x lim(arctan x)=lim arctan b b→>+0 b→
d . 1 1 2 0 x + x + 例1 求 + = + →+ + b b x x x x 0 2 0 2 d 1 1 d lim 1 1 x b b b b lim (arctan ) lim arctan 0 →+ →+ = = π . 2 = 解

例2求 xe dx 解因为 redx= xd(e)=xe xe dx -ae=1+e 故 xe dx= lim edx= lim(ae-1+e)=-1
0 e d . x x x − 例2 求 = = − 0 0 0 0 e d d(e ) e e d a x a a x x a x x x x x x x e 1 e , a a = −a − + 0 0 e d lim e d lim ( e 1 e ) 1. x x a a a a a x x x x a − →− →− = = − − + = − 解 因为 故

例3求 sin xdx b b At sin xdx= lim sinxdx= lim( x 0 b→+0 lim(coSb+1) 因为m(-),不存在,故smxd发散
sin d . 1 x x + 例3 求 0 0 sin d lim sin d b b x x x x + →+ = = 0 lim ( cos ) b b x →+ − = lim (−cos +1), →+ b b lim ( cosb) b − →+ 0 sin dx x + 解 因为 ,不存在,故 发散

例4讨论 dx当a为何值时收敛,为何 x 值时发散 解当a=1时 k=m[dx=m(hx)=lmhb不存在 6- →)+0 即dx发散 X 当a≠时 (ba-1) →)+ 当a>1时,ba→>0b→+∞),因此
解 当 a =1 时, →+ →+ →+ + = = = b b b b b a x x b x x x 1 1 1 d lim (ln ) lim ln 1 d lim 1 1 1 dx x + ( 1), 1 1 ) lim 1 1 d lim ( 1 d lim 1 1 , 1 1 1 1 1 − − = − = = − →+ − →+ →+ + a b b a b b a b a b a x a x x x x 当a 时 当 a >1时, 0( ), 1 → → + − b b a 因此 即 发散. 例4 讨论 当 为何值时收敛,为何 值时发散. x x a d 1 1 + a 不存在

+00 dx= lim-(6-1 X C 当a1时收敛,当<1时是发散 x 的
1 1 1 1 1 d lim ( 1) b 1 1 x b x + − →+ = − = − − 当 <1时, 因此 发散.故 广义积分 当 >1时收敛,当 ≤1时是发散 的. a ( ), 1 → → + − b b dx x 1 1 + dx x a 1 1 + a a
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程PPT教学课件(章节知识点)2.4 函数的微分.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.3 函数的单调性.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.3 换元积分法.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.3 无穷小与无穷大.ppt
- 《高等数学》课程PPT教学课件(章节知识点)2.3 高阶导数.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.2 洛必达(L’Hospital)法则.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.2 基本积分公式.ppt
- 《高等数学》课程PPT教学课件(章节知识点)2.2 导数的基本公式和运算法则.ppt
- 《高等数学》课程PPT教学课件(章节知识点)5.2 微积分基本定理.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.2 函数的极限.ppt
- 《高等数学》课程PPT教学课件(章节知识点)2.1 导数的概念.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.1 中值定理.ppt
- 《高等数学》课程PPT教学课件(章节知识点)5.1 定积分的概念.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.1 不定积分的概念与性质.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.1 函数的概念与性质.ppt
- 函数的极限:x→x0时函数的极限.ppt
- 函数的极限:x→∞时函数的极限.ppt
- 中国石油大学(北京):《高等数学》课程教学资源(辅助教材讲义,共十二章).pdf
- 《数学建模》课程教学资源:2004年美国大学生数学建模竞赛题目.doc
- 《数学建模》课程教学资源:2003 MCM Problems.doc
- 《高等数学》课程PPT教学课件(章节知识点)5.3 定积分的换元法与分部积分法.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.4 分部积分法.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.4 函数的极值.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.4 极限的性质及四则运算法则.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.6 函数的连续性.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.5 最大值与最小值及经济应用举例.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.5 两个重要极限.ppt
- 《高等数学》课程PPT教学课件(章节知识点)2.5 数学软件 Mathematica 的应用.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.7 经济问题中的常见的函数.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.5 微分方程初步.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.7 函数的凸性和曲线的拐点、渐近线.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.8 数学软件Mathematica 的应用.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.8 函数图形的描绘.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.6 边际分析与弹性分析简介.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.1 线性方程组的消元解法.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.9 数学软件Mathematica的应用三.ppt
- 《高等数学》课程PPT教学课件(章节知识点)1.1 n 阶行列式的定义及性质.ppt
- 《高等数学》课程PPT教学课件(章节知识点)2.1 矩阵及其运算.ppt
- 《高等数学》课程PPT教学课件(章节知识点)3.1 n 维向量及其运算.ppt
- 《高等数学》课程PPT教学课件(章节知识点)4.2 线性方程组解的结构.ppt