上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140917

ME369 Modeling,Analysis and System Control Fall 2014 Yuan Jianjun(袁建军) Associate Professor,Robotics Institute Office:Room 401,Building B of ME School yuanjj@sjtu.edu.edu.cn 021-34205559
Yuan Jianjun (袁建军) Associate Professor, Robotics Institute Office: Room 401, Building B of ME School yuanjj@sjtu.edu.edu.cn 021-34205559 ME369 Modeling, Analysis and System Control Fall 2014

ME369 Modeling,Analysis and System Control-A --Lecture 140917 Week 1# Administrative Issues Sep.15(M) Ch1 Introduction to control system Sep.17(W) Laplace Transform-definition, Ch2.1~ 2.4(4) HW1 theorems Week 2# Sep.22(M) Laplace Transform-inverse, Ch2.4, solving equation,MATLAB 2.5(4h) Dynamic systems-mechanical Ch3.1 HW1 due Sep.24(W) electrical system modeling 3.3 HW2
ME369 Modeling, Analysis and System Control-A --Lecture_140917 Week 1# Sep.15(M) Administrative Issues Introduction to control system Ch1 Sep.17(W) Laplace Transform – definition, theorems Ch2.1 ~ 2.4 (4th ) HW1 Week 2# Sep.22(M) Laplace Transform – inverse, solving equation, MATLAB Ch2.4, 2.5 (4th ) Sep.24(W) Dynamic systems – mechanical / electrical system modeling Ch3.1 ~ 3.3 HW1 due HW2

Problems of HW1 ·Refer to the ftp site. .ftp://public.sjtu.edu.cn ·User:yuanjj ·Password:public DUE:Sep.24 (W)
Problems of HW1 • Refer to the ftp site. • ftp://public.sjtu.edu.cn • User: yuanjj • Password: public DUE: Sep.24 (W)

Definition of Laplace Transform Definition of Laplace Transform The Laplace Transform of f(t)is defined as F(s)=f(t)e-dt=[f() S=0+j0 Function ft)that satisfies 1.A time continuous function; 2.Real function; 3.t)=0,for0: 4 0f(t)eh<w→limf()e=0
• Definition of Laplace Transform • The Laplace Transform of f(t) is defined as 0 ( ) ( ) [ ( )] st F s f t e dt f t L lim ( ) 0 st t f te 0 ( ) st f t e dt Definition of Laplace Transform s j Function f(t) that satisfies 1. A time continuous function; 2. Real function; 3. f(t)=0, for t<0; 4

Laplace Transform of Typical Function 1.Exponential Function- 4.Sinusoidal Function [f(t)=0 for t<0 f(t)=0 for t<0 f(t)=Ae-for t≥0 f(t)=Asin ot for t≥0 2.Step Function f(t)=0 for t<0 ww-Sudv+Svdu f(t)=A for t≥0 3.Ramp Function Euler's Theorem f(t)=0 for t<0 f(t)=At for t≥0 coso1-em+em)
Laplace Transform of Typical Function 2. Step Function ( ) for 0 ( ) 0 for 0 f t A t f t t 3. Ramp Function ( ) for 0 ( ) 0 for 0 f t At t f t t uv udv vdu ( ) sin for 0 ( ) 0 for 0 f t A t t f t t 1.Exponential Function- 4. Sinusoidal Function ( ) for 0 ( ) 0 for 0 f t Ae t f t t t Euler’s Theorem

Existence of Laplace Transform Requirents of Time-Domain Function Given a function f(t)that satisfies (1)f(t)is a time function such that f(t)=0 for t0,and f(t)is exponential order as t approaches infinity. Exponential order A function f(t)is said to be of exponential order if a real,positive constant exists such that the function e|ft→0ast→o spacatv.)0aa. Abscissa of convergence
• Requirents of Time-Domain Function – Given a function f(t) that satisfies (1) f(t) is a time function such that f(t)=0 for t0, and f(t) is exponential order as t approaches infinity. – Exponential order A function f(t) is said to be of exponential order if a real,positive constant exists such that the function Existence of Laplace Transform e f t t t ( ) 0 as c 0 c lim e f ( t ) t t c Abscissa of convergence Specially, if

Example 1.f)=t2 d(t2) lim e-t2 =lim dt 2t 2 三 lim lim =0 t-.0 t-.0 d(e) t-.00 G" dt 2.f(t)=te-c lim e-ote-=0 o+C>0 Only if exists t-.o0 σ>-C
Example 0 2 lim 2 lim ( ) ( ) lim lim 2 . 2 . 2 . t t t t t t t e e t dt d e dt d t e t 2 1. f(t) t ct te 2. f(t) lim 0 . t ct t e te Only if c exists c 0

Example 3.ft)=e2 lim e-ae=lim e-)=co t-0 t-.0
Example ( ) . . 2 2 lim lim t t t t t e e e 2t 3. f(t) e

Definition of Laplace Transform Definition of Laplace Transform Given a function f(t)that satisfies 0fu)erdt<o→ lim f(t)e=0 t0 for some positive real o.The Laplace Transform of f(t)is defined as F(s)=∫nf(r)edt=[f(t】 Do we have to worry about the "existence condition"of F(s)? As long as the time function f(t)does not grow faster than exponentially, its Laplace Transform always exists.This condition is satisfied by all response signals of physical systems
• Definition of Laplace Transform – Given a function f(t) that satisfies 0 ( ) ( ) [ ( )] st F s f t e dt f t L Do we have to worry about the “existence condition” of F(s)? As long as the time function f(t) does not grow faster than exponentially, its Laplace Transform always exists. This condition is satisfied by all response signals of physical systems. lim ( ) 0 t t f te 0 ( ) t f t e dt for some positive real . The Laplace Transform of f(t) is defined as Definition of Laplace Transform

Laplace Transform of Typical Function 1.Exponential Function- 4.Sinusoidal Function [f(t)=0 for tto A f(t)=At for t≥0 F(s)= f0=2or0<1<, to
Laplace Transform of Typical Function 1.Exponential Function- ( ) for 0 ( ) 0 for 0 f t Ae t f t t t 2. Step Function ( ) for 0 ( ) 0 for 0 f t A t f t t 3. Ramp Function ( ) for 0 ( ) 0 for 0 f t At t f t t ( ) sin for 0 ( ) 0 for 0 f t A t t f t t 4. Sinusoidal Function 5.Translated Function f t t t f t t t ( ) 1 ( ) for ( ) 1 ( ) 0 for 6.Pulse Function 0 0 0 ( ) for 0 ( ) 0 for 0 and t t t t t A f t f t t ( ) A F s s 2 ( ) A F s s
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140915.pdf
- 上海交通大学:《高电压工程》课程教学资源_电气工程基础(二)课程导学与习题集.pdf
- 上海交通大学:《高电压工程》课程教学资源(试验报告)空气间隙放电实验.doc
- 上海交通大学:《高电压工程》课程教学资源(试验报告)电缆波过程实验.doc
- 上海交通大学:《高电压工程》课程教学资源(试验报告)沿面放电实验.doc
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)电力系统过电压.pdf
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)电力系统绝缘.pdf
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)电力系统波过程(线路和绕组中的波过程).pdf
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)高电压技术概论(张君).pdf
- 中华人民共和国国家标准:GB/T 16927.1 - 2011(代替GB/T 16927.1 - 1997)《高电压试验技术》第1部分:一般定义及试验要求 High-voltage test techniques-Part 1:General definitions and test requirements(IEC60060-1:2010,MOD).pdf
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)高电压的测量.pdf
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)冲击高电压及大电流的产生.pdf
- 上海交通大学:《高电压工程》课程教学资源(电气工程基础)稳态高电压试验设备.pdf
- 《高电压工程》课程教学资源(参考书籍)《电力系统过电压》(朱子述).pdf
- 《高电压工程》课程教学资源(参考书籍)《High Voltage Engineering Test》Chapter 2 Generation of high voltages Chapter 3 Measurement of high voltages.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源[09]homework03_solution.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源[19]2014至2015学年第1学期期末考-答案.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源[19]2014至2015学年第1学期期末考-A卷.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源[18]homework07_solution.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源[18]homework07.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140922.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140924.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140928.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141008.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141013.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141015.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141020.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141027.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141029.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141103.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141105.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141110.pdf
- 上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_141112.pdf
- 《电气与电子测量技术》课程教学资源(习题与答案)第一章 测量及测量系统基础、第二章 误差的基本理论.pdf
- 《电气与电子测量技术》课程教学资源(习题与答案)第三章 常用传感器及其调理电路、第四章 集成运放与模拟调理电路分析.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源(2017课件讲稿)绪论、第一章 测量技术概述(罗利文).pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源(2017课件讲稿)第七章 虚拟仪器LABVIEW.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源(2017课件讲稿)第三章 常用传感器及其调理电路.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源(2017课件讲稿)第二章 误差的基本理论.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源(2017课件讲稿)第五章 电气测量技术.pdf