中国高校课件下载中心 》 教学资源 》 大学文库

上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140917

文档信息
资源类别:文库
文档格式:PDF
文档页数:34
文件大小:285.95KB
团购合买:点击进入团购
内容简介
上海交通大学:《系统模型、分析与控制 Modeling、Analysis and Control》课程教学资源(讲义课件)Lecture_140917
刷新页面文档预览

ME369 Modeling,Analysis and System Control Fall 2014 Yuan Jianjun(袁建军) Associate Professor,Robotics Institute Office:Room 401,Building B of ME School yuanjj@sjtu.edu.edu.cn 021-34205559

Yuan Jianjun (袁建军) Associate Professor, Robotics Institute Office: Room 401, Building B of ME School yuanjj@sjtu.edu.edu.cn 021-34205559 ME369 Modeling, Analysis and System Control Fall 2014

ME369 Modeling,Analysis and System Control-A --Lecture 140917 Week 1# Administrative Issues Sep.15(M) Ch1 Introduction to control system Sep.17(W) Laplace Transform-definition, Ch2.1~ 2.4(4) HW1 theorems Week 2# Sep.22(M) Laplace Transform-inverse, Ch2.4, solving equation,MATLAB 2.5(4h) Dynamic systems-mechanical Ch3.1 HW1 due Sep.24(W) electrical system modeling 3.3 HW2

ME369 Modeling, Analysis and System Control-A --Lecture_140917 Week 1# Sep.15(M) Administrative Issues Introduction to control system Ch1 Sep.17(W) Laplace Transform – definition, theorems Ch2.1 ~ 2.4 (4th ) HW1 Week 2# Sep.22(M) Laplace Transform – inverse, solving equation, MATLAB Ch2.4, 2.5 (4th ) Sep.24(W) Dynamic systems – mechanical / electrical system modeling Ch3.1 ~ 3.3 HW1 due HW2

Problems of HW1 ·Refer to the ftp site. .ftp://public.sjtu.edu.cn ·User:yuanjj ·Password:public DUE:Sep.24 (W)

Problems of HW1 • Refer to the ftp site. • ftp://public.sjtu.edu.cn • User: yuanjj • Password: public DUE: Sep.24 (W)

Definition of Laplace Transform Definition of Laplace Transform The Laplace Transform of f(t)is defined as F(s)=f(t)e-dt=[f() S=0+j0 Function ft)that satisfies 1.A time continuous function; 2.Real function; 3.t)=0,for0: 4 0f(t)eh<w→limf()e=0

• Definition of Laplace Transform • The Laplace Transform of f(t) is defined as 0 ( ) ( ) [ ( )] st F s f t e dt f t      L lim ( ) 0 st t f te    0 ( ) st f t e dt      Definition of Laplace Transform s    j Function f(t) that satisfies 1. A time continuous function; 2. Real function; 3. f(t)=0, for t<0; 4

Laplace Transform of Typical Function 1.Exponential Function- 4.Sinusoidal Function [f(t)=0 for t<0 f(t)=0 for t<0 f(t)=Ae-for t≥0 f(t)=Asin ot for t≥0 2.Step Function f(t)=0 for t<0 ww-Sudv+Svdu f(t)=A for t≥0 3.Ramp Function Euler's Theorem f(t)=0 for t<0 f(t)=At for t≥0 coso1-em+em)

Laplace Transform of Typical Function 2. Step Function        ( ) for 0 ( ) 0 for 0 f t A t f t t 3. Ramp Function        ( ) for 0 ( ) 0 for 0 f t At t f t t uv udv vdu            ( ) sin for 0 ( ) 0 for 0 f t A t t f t t  1.Exponential Function- 4. Sinusoidal Function         ( ) for 0 ( ) 0 for 0 f t Ae t f t t t Euler’s Theorem

Existence of Laplace Transform Requirents of Time-Domain Function Given a function f(t)that satisfies (1)f(t)is a time function such that f(t)=0 for t0,and f(t)is exponential order as t approaches infinity. Exponential order A function f(t)is said to be of exponential order if a real,positive constant exists such that the function e|ft→0ast→o spacatv.)0aa. Abscissa of convergence

• Requirents of Time-Domain Function – Given a function f(t) that satisfies (1) f(t) is a time function such that f(t)=0 for t0, and f(t) is exponential order as t approaches infinity. – Exponential order A function f(t) is said to be of exponential order if a real,positive constant exists such that the function Existence of Laplace Transform     e f t t t ( ) 0 as              c 0 c      lim e f ( t ) t t  c Abscissa of convergence Specially, if

Example 1.f)=t2 d(t2) lim e-t2 =lim dt 2t 2 三 lim lim =0 t-.0 t-.0 d(e) t-.00 G" dt 2.f(t)=te-c lim e-ote-=0 o+C>0 Only if exists t-.o0 σ>-C

Example 0 2 lim 2 lim ( ) ( ) lim lim 2 . 2 . 2 .            t t t t t t t e e t dt d e dt d t e t       2 1. f(t)  t ct te  2. f(t)  lim 0 .      t ct t e te  Only if   c exists   c  0

Example 3.ft)=e2 lim e-ae=lim e-)=co t-0 t-.0

Example          ( ) . . 2 2 lim lim  t  t t t t e e e 2t 3. f(t)  e

Definition of Laplace Transform Definition of Laplace Transform Given a function f(t)that satisfies 0fu)erdt<o→ lim f(t)e=0 t0 for some positive real o.The Laplace Transform of f(t)is defined as F(s)=∫nf(r)edt=[f(t】 Do we have to worry about the "existence condition"of F(s)? As long as the time function f(t)does not grow faster than exponentially, its Laplace Transform always exists.This condition is satisfied by all response signals of physical systems

• Definition of Laplace Transform – Given a function f(t) that satisfies 0 ( ) ( ) [ ( )] st F s f t e dt f t      L Do we have to worry about the “existence condition” of F(s)? As long as the time function f(t) does not grow faster than exponentially, its Laplace Transform always exists. This condition is satisfied by all response signals of physical systems. lim ( ) 0 t t f te      0 ( ) t f t e dt       for some positive real . The Laplace Transform of f(t) is defined as Definition of Laplace Transform

Laplace Transform of Typical Function 1.Exponential Function- 4.Sinusoidal Function [f(t)=0 for tto A f(t)=At for t≥0 F(s)= f0=2or0<1<, to

Laplace Transform of Typical Function 1.Exponential Function-         ( ) for 0 ( ) 0 for 0 f t Ae t f t t t 2. Step Function        ( ) for 0 ( ) 0 for 0 f t A t f t t 3. Ramp Function        ( ) for 0 ( ) 0 for 0 f t At t f t t        ( ) sin for 0 ( ) 0 for 0 f t A t t f t t  4. Sinusoidal Function 5.Translated Function                 f t t t f t t t ( ) 1 ( ) for ( ) 1 ( ) 0 for 6.Pulse Function            0 0 0 ( ) for 0 ( ) 0 for 0 and t t t t t A f t f t t ( ) A F s s  2 ( ) A F s s 

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档