《层析分析法简介》Analytical Hierarchy Process

virgin Tech AOE 3-2 Analytical Hierarchy Process A systematic method for comparing a list of objectives or alternatives When used in the systems engineering process. AhP can be a powerful tool for comparing alternative design concepts Reference: Ernest h. forman Decision bt Objectives, http:/mdm.gwu.edu/forman/dbo.pdf
Analytical Hierarchy Process • A systematic method for comparing a list of objectives or alternatives • When used in the systems engineering process, AHP can be a powerful tool for comparing alternative design concepts • Reference Reference Reference: Ernest H. Forman, Decision by Objectives, http://mdm.gwu.edu/Forman/DBO.pdf • A systematic method for comparing a list of objectives or alternatives • When used in the systems engineering process, AHP can be a powerful tool for comparing alternative design concepts • Reference Reference Reference: Ernest H. Forman, Decision by Objectives, http://mdm.gwu.edu/Forman/DBO.pdf

virgin Tech AHP AOE 3-2 Assume that a set of objectives has been established (VSD, OH), and that we are trying to establish a normalized set of weights to be used when comparing alternatives using these objectives e For simplicity we assume that there are 4 objectives: O,O2,O3, and O4
AHP • Assume that a set of objectives has been established (VSD, OH), and that we are trying to establish a normalized set of weights to be used when comparing alternatives using these objectives. • For simplicity, we assume that there are 4 objectives: O1, O2, O3, and O4. • Assume that a set of objectives has been established (VSD, OH), and that we are trying to establish a normalized set of weights to be used when comparing alternatives using these objectives. • For simplicity, we assume that there are 4 objectives: O1, O2, O3, and O4

virgin Tech AHP AOE 3-2 Form a pairwise comparison matrix A, where the number in the ih row and ih column gives the relative importance of o, as compared with Use a 1-9 scale. with v 1 if the two objectives are equal in importance ai=3 if O, is weakly more important than O Fi,=5 if O, is strongly more important than O i=7 if O; is very strongly more important than O ai=9 if O, is absolutely more important than O a= 1 3 if o is weakly more important than o
AHP • Form a pairwise comparison matrix A, where the number in the ith row and jth column gives the relative importance of Oi as compared with Oj • Use a 1–9 scale, with – aij = 1 if the two objectives are equal in importance – aij = 3 if Oi is weakly more important than Oj – aij = 5 if Oi is strongly more important than Oj – aij = 7 if Oi is very strongly more important than Oj – aij = 9 if Oi is absolutely more important than Oj – aij = 1/3 if Oj is weakly more important than Oi • Form a pairwise comparison matrix A, where the number in the ith row and jth column gives the relative importance of Oi as compared with Oj • Use a 1–9 scale, with – aij = 1 if the two objectives are equal in importance – aij = 3 if Oi is weakly more important than Oj – aij = 5 if Oi is strongly more important than Oj – aij = 7 if Oi is very strongly more important than Oj – aij = 9 if Oi is absolutely more important than Oj – aij = 1/3 if Oj is weakly more important than Oi

virgin Tech AHP AOE 3-2 Thus we might arrive at the following matrix 11/51/31/71「10000.20003330.143 51355000100300500 31/3 3|30000.3331000300 71/51/3170000.2000.331.00 To normalize the weights, compute the sum of each column and then divide each column by the corresponding sum Using an overbar to denote normalization, we get 0.0630.11500710.016 0.3130.5770.6430.547 0.1880.1920.2140.328 04380.1150.0710.109
AHP • Thus we might arrive at the following matrix: • To normalize the weights, compute the sum of each column and then divide each column by the corresponding sum • Using an overbar to denote normalization, we get: • Thus we might arrive at the following matrix: • To normalize the weights, compute the sum of each column and then divide each column by the corresponding sum • Using an overbar to denote normalization, we get: = = 7.000 0.200 0.333 1.000 3.000 0.333 1.000 3.000 5.000 1.000 3.000 5.000 1.000 0.200 0.333 0.143 7 1 / 5 1 / 3 1 3 1 / 3 1 3 5 1 3 5 1 1 / 5 1 / 3 1 / 7 A = 0.438 0.115 0.071 0.109 0.188 0.192 0.214 0.328 0.313 0.577 0.643 0.547 0.063 0.115 0.071 0.016 A

virgin Tech AHP AOE 3-2 00630.1150.0710.016 0.3130.5770.6430.547 A= 0.1880.1920.2140.328 04380.1150.0710.109 The numbers in the second row are generally larger than the rest of the numbers, except for the case of column 1 This indicates some inconsistency in the comparisons used in the original matrix Ideally the 4 normalized columns would all be identical if the pairwise comparisons were consistent In practice, one can compute a consistency measure using the eigenvalues of the normalized comparison matrix
AHP • The numbers in the second row are generally larger than the rest of the numbers, except for the case of column 1 • This indicates some inconsistency in the comparisons used in the original matrix • Ideally, the 4 normalized columns would all be identical if the pairwise comparisons were consistent • In practice, one can compute a consistency measure using the eigenvalues of the normalized comparison matrix. • The numbers in the second row are generally larger than the rest of the numbers, except for the case of column 1 • This indicates some inconsistency in the comparisons used in the original matrix • Ideally, the 4 normalized columns would all be identical if the pairwise comparisons were consistent • In practice, one can compute a consistency measure using the eigenvalues of the normalized comparison matrix. = 0.438 0.115 0.071 0.109 0.188 0.192 0.214 0.328 0.313 0.577 0.643 0.547 0.063 0.115 0.071 0.016 A

virgin Tech AHP AOE 3-3 The next step is to compute the average values of each row and use these as the weights in the Objective Hierarchy For this example, the weights would be =|00660.5200.2310.183 Note that by construction W.三 These weights would be used in summing the measures as required in the evaluation of the Objective Hierarchy
AHP • The next step is to compute the average values of each row and use these as the weights in the Objective Hierarchy • For this example, the weights would be: • Note that by construction, • These weights would be used in summing the measures as required in the evaluation of the Objective Hierarchy. • The next step is to compute the average values of each row and use these as the weights in the Objective Hierarchy • For this example, the weights would be: • Note that by construction, • These weights would be used in summing the measures as required in the evaluation of the Objective Hierarchy. [ ]T w = 0.066 0.520 0.231 0.183 ∑ = = 4 1 1. i wi
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)附录 常用生物统计方法的SAS程序.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第四章 常用概率分布.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第四章 常用概率分布.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第十章 协方差分析.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第十章 协方差分析.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第十二章 试验设计.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第十二章 试验设计.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第十一章 非参数检验.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第十一章 非参数检验.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第六章 方差分析(2/2).ppt
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第六章 方差分析(1/2).ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第六章 方差分析.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第八章 直线回归与相关.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第八章 直线回归与相关.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第五章 t检验.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第五章 t检验.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第二章 资料的整理.ppt
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第二章 资料的整理.doc
- 《生物统计及试验设计》课程教学资源(教案讲义,第三版)第九章 多元线性回归与多项式回归.doc
- 《生物统计及试验设计》课程教学资源(PPT课件,第三版)第三章 平均数、标准差与变异系数.ppt
- 《层析分析法简介》用 Excel求解层次分析法(AHP)问题.pdf
- 《层析分析法简介》层次分析法(AHP)应用简介.ppt
- 《层析分析法简介》表6-1农村专业合作社效率评价指标体系.doc
- 《用于内部审计部门的入门培训》PPT教程.ppt
- 《统计渐近论基础》PDF电子书(共七章).pdf
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第一章 绪论(周艳).ppt
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第三章 数据分布特征的描述 第一节 分布集中趋势的测度.ppt
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第三章 数据分布特征的描述 第二节 分布离散程度的测度 第三节 偏态与峰度的测度.ppt
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第三章 数据分布特征的描述 第四节 统计表与统计图.ppt
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第二章 统计数据的搜集与整理.ppt
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第四、五章 时间序列分析.ppt
- 青岛大学国贸系:《统计学》课程教学资源(PPT课件)第四、五章 时间序列分析.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(电子教案讲义,共九章).doc
- 《统计学》课程教学资源(PPT课件讲稿)第六章 抽样与参数估计.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(PPT课件讲稿)第一章 绪论 第一节 统计与统计学.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(PPT课件讲稿)第一章 绪论 第二节 统计学的分科.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(PPT课件讲稿)第一章 绪论 第三节 统计学的产生与发展.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(PPT课件讲稿)第一章 绪论 第四节 统计学的基本概念.ppt
- 兰州财经大学(兰州商学院):《统计学》课程教学资源(PPT课件讲稿)第七章 假设检验.ppt