电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 3 Adaptive Wiener Filter and Biomedical Applications

Lecture 3 Adaptive Wiener and Biomedical Applications Contents in the lecture: 1.Wiener filter 2.Adaptive Wiener filter 1
1 Lecture 3 Adaptive Wiener and Biomedical Applications Contents in the lecture: 1. Wiener filter 2. Adaptive Wiener filter

1.Wiener filter Reviewing Wiener filter 2
1. Wiener filter Reviewing Wiener filter 2

2.Adaptive Wiener Filter (AWF) Introduction The features of Wiener Filter: (1)Be suitable to process stationary random signals (2)The prior statistical properties for signals and noise is required (3)The parameters of filter system are fixed 3
3 2. Adaptive Wiener Filter (AWF) Introduction The features of Wiener Filter: (1) Be suitable to process stationary random signals (2) The prior statistical properties for signals and noise is required (3) The parameters of filter system are fixed

Introduction Kalman Filtering (1)be suitable to process non-stationary random signals; (2)The prior statistical properties for signals and noise are required; (3)The parameters of the filter are time variation. 4
4 Introduction Kalman Filtering ( 1 )be suitable to process non-stationary random signals; ( 2 )The prior statistical properties for signals and noise are required; ( 3 )The parameters of the filter are time – variation

Introduction Biomedical signal analysis in practice (1)The complexity and non-stationary of biomedical signals; (2)Be impossible to obtain the prior information of signals and noise;Or (3)The statistical properties vary with time. Therefore,Wiener filter and Kaleman filter can not realize the optimum filtering in above situations. However,Adaptive filter can provide the excellent filtering performances. 5
5 Introduction Biomedical signal analysis in practice (1) The complexity and non-stationary of biomedical signals; (2) Be impossible to obtain the prior information of signals and noise; Or (3) The statistical properties vary with time. Therefore, Wiener filter and Kaleman filter can not realize the optimum filtering in above situations. However, Adaptive filter can provide the excellent filtering performances

Introduction Adaptive filter concept By means of the known filter parameters of the previous time,update the filter parameters of the 9( current time to be suitable to the e unknown statistical properties of signals a and noise for the optimum filter. 6
6 Introduction Adaptive filter concept By means of the known filter parameters of the previous time, update the filter parameters of the current time to be suitable to the unknown statistical properties of signals and noise for the optimum filter

Several main adaptive filters (1)LMS adaptive filter(闭环结构) (2)RLS (Recursive least-squares) adaptive filter (开环结构) (3)IIR adaptive filter ■■■■■ 7
7 Several main adaptive filters (1) LMS adaptive filter ( 闭 环 结 构 ) (2) RLS (Recursive least – squares) adaptive filter ( 开 环 结 构 ) (3) IIR adaptive filter 2222

Main applications of AWF Adaptive Noise Canceling Adaptive line enhance 8
8 Main applications of AWF Adaptive Noise Canceling Adaptive line enhance

LMS adaptive Wiener filter The LMS adaptive Wiener filter consists of two basic processes: (1)A filtering process (a.input-output; b.an estimation error)Wiener filtering (2)An adaptive process (the automatic adjustment of the parameters of the filter in accordance with the estimation error) 9
9 LMS adaptive Wiener filter The LMS adaptive Wiener filter consists of two basic processes: (1) A filtering process (a. input–output; b. an estimation error) Wiener filtering (2) An adaptive process (the automatic adjustment of the parameters of the filter in accordance with the estimation error)

LMS adaptive Wiener filter 1 Filtering processing (Wiener filter) Adaptive linear components: x(k-1) 砀 x(k-2 () : x(-0 E() d() 10
10 LMS adaptive Wiener filter Adaptive linear components: 1 Filtering processing (Wiener filter)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 2 Classical Power Spectral Estimation Methods and Biomedical Applications.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 1 Introduction(饶妮妮).pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(案例教学)心电信号处理.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(案例教学)脑电信号处理(格兰杰因果关系及其在脑电中的应用).pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(案例教学)基因组信号处理.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(案例教学)蛋白质信号处理 Deep-Kcr - accurate detection of lysine crotonylation sites using deep learning method.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(教学大纲,饶妮妮).pdf
- 西藏农牧学院:《动物生物化学 Animal biochemistry》课程教学资源(电子教案,杨晓梅).pdf
- 西藏农牧学院:《动物生物化学 Animal biochemistry》课程教学资源(教学大纲,本科).pdf
- 西藏农牧学院:《动物生物化学 Animal biochemistry》课程教学资源(教学大纲,大专).pdf
- 惠州学院:《基础生物学》课程教学资源(实验讲义)河蚌(或田螺)的解剖.pdf
- 惠州学院:《基础生物学》课程教学资源(实验讲义)蛔虫和环毛蚓的比较.pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第二十二章 癌基因与抑癌基因(Oncogene and anti-oncogene).pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第二十一章 细胞通讯与细胞信号转导的分子机理 Cell Communication and Cell Signal Transduction.pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第二十章 DNA重组与基因工程 DNARecombination and Genetic engineering.pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第十九章 基因表达调控(Gene Expression and Its Regulation).pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第十八章 蛋白质的生物合成(The Biosynthesis of protein).pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第十七章 RNA的生物合成(TheBiosynthesis of RNA).pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第十六章 DNA的生物合成(TheBiosynthesis of DNA).pdf
- 河南大学:《生物化学》课程教学资源(教案讲义)第十五章 核酸的结构与功能 The Structure and Function of Nucleic Acid.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 4.1 Parametric Model Method.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 4.2 biomedical Applications of AR Model.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 5.1 卡尔曼滤波器 Kalman Filter.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 5.2 Biomedical Applications of Kalman Filter.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 6 Establishing Causality Bewteen Biomedical Signals.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 7 Multivariate Signal Processing and Biomedical Applications.pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(参考文献)Time-Frequency Analysis(Kernel nonnegative matrix factorization for spectral EEG feature extraction).pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 8.1 Time-frequency analysis - Short Time Fourier Transformation(STFT).pdf
- 电子科技大学:《生物医学信号处理 Biomedical Signal Processing》课程教学资源(课件讲稿)Lecture 8.2 Time-Frequency Analysis - Wavelet Analysis 小波分析.pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)绪论(李永杰、夏阳).pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第1章 生物神经系统的结构基础.pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第2章 神经信息传导的生理基础.pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第3章 视觉的神经机制与计算模型(3.1-3.3).pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第3章 视觉的神经机制与计算模型(3.4-3.5).pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第3章 视觉的神经机制与计算模型(3.6)视觉系统中的串行与平行处理机制.pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第3章 视觉的神经机制与计算模型(3.7)选择性注意机制与模型.pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第3章 视觉的神经机制与计算模型(3.8-3.9).pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第4章 眼动 Eye movements(4.1-4.4).pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第4章 眼动 Eye movements(4.5)眼动跟踪技术的应用领域.pdf
- 电子科技大学:《神经信息学基础 The Basis of Neuroinformatics》研究生课程教学资源(课件讲稿)第5章 脑电 EEG/ERP(5.1-5.2).pdf