上海交通大学:《材料热力学》教学资源_2018 lecture 6 property relation II

Contents of Today S.J.T.U. Phase Transformation and Applications Review previous Property relation Functions F and G Partial molar quantities Property relation derived from U,H,F,and G etc. SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II Contents of Today Review previous Property relation Functions F and G Partial molar quantities Property relation derived from U, H, F, and G etc

3.2 The Functions F and G(3) S.J.T.U. Phase Transformation and Applications U PV TS H≡J+PV G=H-TS F=U-TS SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II 3.2 The Functions F and G (3) F U −TS G H −TS H U +PV

3.2 The Functions F and G(4) S.J.T.U. Phase Transformation and Applications dU=Tds-Pav dF=-SdT-Pdv Pt H dG=-SdT+VdP S dH TdS+Vdp F U SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II 3.2 The Functions F and G (4) dU =TdS−PdV dF = −SdT−PdV dG= −SdT+VdP dH =TdS+VdP

3.3 Chemical Potentials (5) S.J.T.U. Phase Transformation and Applications &G On T,P,nj≠n G OF aH aU on; on =4 T,P.nj+ni oni),+m P.S,ni+ni V.S.n;+ni The chemical potential of the component i. G H Used extensively in the treatment of the thermodynamics of solutions and of chemical reactions. SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II 3.3 Chemical Potentials (5) j i T V nj ni i T P n n ni F n G = , , , , i i T P nj ni i T V nj ni i P S nj ni i V S nj ni n U n H n F n G = = = = , , , , , , , , i The chemical potential of the component i. Used extensively in the treatment of the thermodynamics of solutions and of chemical reactions

Review S.J.T.U. Phase Transformation and Applications 当系统由始态经过某一过程变到终态Ⅱ后,如能使系统再回到原态,同时 也消除了原过程对环境所产生的一切影响,则原来过程称为可逆过程。 H=U+PV dU=TdS-Pdv PW G=H-TS dF=-SaT-Pav TS F=U-TS dG=-SaT+Vdp G H dH=TaS+Vdp U The chemical potential of the component i. &G OF aH aU Oni T,P,n≠n On, On O =4 i )p.S.nj+m i Jv S,nj+m SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II Review F U −TS G H −TS H U +PV 当系统由始态I经过某一过程变到终态II后,如能使系统再回到原态,同时 也消除了原过程对环境所产生的一切影响,则原来过程称为可逆过程。 dU =TdS−PdV dF = −SdT−PdV dG= −SdT+VdP dH =TdS+VdP i i T P nj ni i T V nj ni i P S nj ni i V S nj ni n U n H n F n G = = = = , , , , , , , , i The chemical potential of the component i

Entropy of Mixing (1) S.J.T.U. Phase Transformation and Applications To calculate the entropy of mixing of two ideal gases. One gas expands isothermally from V to Vr in the apparatus shown schematically below. nR VT ideal gas Initially ds-nkdvn rdiny evacuated S2-S,=nRInV H U SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II Entropy of Mixing (1) dV n Rd V V nR dS T a T a V V V V S S ln 2 1 = = To calculate the entropy of mixing of two ideal gases. ideal gas V nR T P V S T V = = Va VT Initially evacuated One gas expands isothermally from Va to VT in the apparatus shown schematically below. a T V V S2 − S1 = nRln

Entropy of Mixing (2) S.J.T.U. Phase Transformation and Applications To calculate the entropy of mixing of two ideal gases. Because ideal gases do not interact,we can calculate the total entropy change as the sum of the two entropy changes of the individual gases. (S-S)。=,RIn'g+么 Va Va Va 2-S=nS2-S,。+m,S,-S。=%,Rn'aa+m,Rn Per mole of mixture: S-S=”Rn。 +业+ nbRnVb Va+Vo na+np na+np n+np H SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II Entropy of Mixing (2) To calculate the entropy of mixing of two ideal gases. Because ideal gases do not interact, we can calculate the total entropy change as the sum of the two entropy changes of the individual gases. ( ) a a b a a V V V S S n R + 2 − 1 = ln Va VT Vb ( ) ( ) b a b b a a b a a b b a V V V n R V V V S S n S S n S S n R + + + 2 − 1 = 2 − 1 + 2 − 1 = ln ln Per mole of mixture: b a b a b b a a b a b a a b V V V R n n n V V V R n n n n n S S + + + + + = + − ln ln 2 1

Entropy of Mixing (3) S.J.T.U. Phase Transformation and Applications The molar fraction of ideal gas a. V。+'a-n。+n=1 na Xa The entropy of mixing per mole of the mixture: Va Va AS.-s,ki V =-R[x Inx。+x,lnx] In general,the entropy of mixing of n ideal gases is: i=1 SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II Entropy of Mixing (3) The molar fraction of ideal gas a. Va VT a a a b a a b n x n n V V V 1 = + = + Vb a a b b b a b b a a b mix a R x x x x V V V x R V V V S x R ln ln ln ln = − + + + + = In general, the entropy of mixing of n ideal gases is: The entropy of mixing per mole of the mixture: = = = − i n i mix i i S x x 1 ln

On Gibbs free energy S.J.T.U. Phase Transformation and Applications -lw=-oW +oW actual Slw T T &Q=dUU-δW dS≥ T 2=dU+p外dV-oW' TdS-du-pndV-W 有效功 SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II On Gibbs free energy −lw= −Wrev +W T lw T Q dS actual = − T Q dS actual Q = dU + p 外dV −W' TdS −dU − p 外dV −W' Q = dU −W 有效功

On Gibbs free energy S.J.T.U. Phase Transformation and Applications TdS-dU-p外dV≥-W' dT=0,dp外=dp=0 TdS-dU-pdW≥-oWW -dU+pV-TS)r,p≥-ow -d(Gh,p≥-w 等号表示可逆过程,即:在定温定压条件下,系统Gibbs自 由能的减少等于系统所作的最大有效功。 SJTU Thermodynamics of Materials Spring2018©X.J.Jin Lecture 6 Property Relation Il
Phase Transformation and Applications S. J. T. U. SJTU Thermodynamics of Materials Spring 2018 © X. J. Jin Lecture 6 Property Relation II On Gibbs free energy TdS −dU − p 外dV −W' dT = 0, dp外 = dp = 0 TdS−dU − pdV −W' ( ) ' − d U + pV −TS T , p −W ( ) ' − d G T , p −W 等号表示可逆过程,即:在定温定压条件下,系统Gibbs自 由能的减少等于系统所作的最大有效功
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《材料热力学》教学资源_2018 lecture 5 property relation.pdf
- 上海交通大学:《材料热力学》教学资源_2018 lecture 4 second law II.pdf
- 《力学改变生活》课程教学资源(文献资料)Observation of Gravitational Waves from a Binary Black Hole Merger.pdf
- 《力学改变生活》课程教学资源(文献资料)The First Sounds of Merging Black Holes.pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)生物力学的发展前景.pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)运动生物力学及组织损伤机理、计算机辅助手术.pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)心血管生物力学及其在疾病诊疗方面的应用.pdf
- 上海交通大学:《人体生物力学》课程教学资源(讲义)人体生物力学概论(梁夫友).pdf
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_静平衡条件说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_运动学计算流程图.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_运动学上机_运动学计算流程图.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_双摆动力学逆问题说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_双摆动力学仿真说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学附加题.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学上机_静平衡条件说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学上机_双摆动力学逆问题说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_动力学上机_双摆动力学仿真说明.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example2.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example1.doc
- 上海交通大学:《复杂系统动力学计算机辅助分析》课程教学资源_Chapter 8_Modeling for Example 4.doc
- 上海交通大学:《材料热力学》教学资源_2018 lecture 7 equilibrium.pdf
- 上海交通大学:《材料热力学》教学资源_2018 lecture 8 chemical equilibrium.pdf
- 西安交通大学:《材料力学 Mechanics of Materials》课程教学资源(课件讲稿)第一部分 基本变形(共六章,主讲:殷民).pdf
- 西安交通大学:《材料力学 Mechanics of Materials》课程教学资源(课件讲稿)第二部分 组合变形(共三章,主讲:殷民).pdf
- 西安交通大学:《材料力学 Mechanics of Materials》课程教学资源(课件讲稿)第三部分 专题讨论(共四章,主讲:殷民).pdf
- 东莞理工学院:《材料力学 Mechanics of Materials》课程教学大纲.pdf
- 东南大学土木工程学院:《材料力学 Mechanics of Materials》课程教学资源(考核要求).pdf
- 上海交通大学材料科学与工程学院:《材料力学 Mechanics of Materials》课程教学大纲.pdf
- 西藏农牧学院:《结构力学》课程教学资源(发展简史,主讲:曹志翔).pdf
- 西藏农牧学院:《结构力学》课程教学资源(学科体系).pdf
- 西藏农牧学院:《结构力学》课程教学资源(课件教案与部分讲义)绪论、结构的几何组成、静定梁.pdf
- 西藏农牧学院:《结构力学》课程教学资源(教学单元教案,共十二章).pdf
- 西藏农牧学院:《结构力学》课程教学资源(求解器简介).pdf
- 运城学院:《电动力学 Electrodynamics》课程教学资源(教学大纲,含思政元素).docx
- 运城学院:《电动力学 Electrodynamics》课程教学资源(习题解答,打印版)第一章 电磁现象的普遍规律.pdf
- 运城学院:《电动力学 Electrodynamics》课程教学资源(习题解答,打印版)第二章 静电场.pdf
- 运城学院:《电动力学 Electrodynamics》课程教学资源(习题解答,打印版)第三章 静磁场.pdf
- 运城学院:《电动力学 Electrodynamics》课程教学资源(习题解答,打印版)第四章 电磁波的传播.pdf
- 运城学院:《电动力学 Electrodynamics》课程教学资源(习题解答,打印版)第五章 电磁波的辐射.pdf
- 运城学院:《电动力学 Electrodynamics》课程教学资源(习题解答,打印版)第六章 狭义相对论.pdf