《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 07 Control of Integrating Plants

Chapter 7 Control of Integrating Plants 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 1/79
Chapter 7 Control of Integrating Plants Zhang, W.D., CRC Press, 2011 Version 1.0 1/79

Control of Integrating Plants 17.1 The Feature of Integrating Systems 27.2 Hoo PID Controllers for Integrating Plants 37.3 H2 PID Controllers for Integrating Plants 47.4 Controller Design for General Integrating Plants 57.5 Maclaurin PID Controllers for Integrating Plants 67.6 Best Achievable Performance of a PID Controllers 4口,4@,4定4定0C Zhang.W.D..CRC Press.2011 Version 1.0 2/79
Control of Integrating Plants 1 7.1 The Feature of Integrating Systems 2 7.2 H∞ PID Controllers for Integrating Plants 3 7.3 H2 PID Controllers for Integrating Plants 4 7.4 Controller Design for General Integrating Plants 5 7.5 Maclaurin PID Controllers for Integrating Plants 6 7.6 Best Achievable Performance of a PID Controllers Zhang, W.D., CRC Press, 2011 Version 1.0 2/79

Section 7.1 The Feature of Integrating Systems 7.1 The Feature of Integrating Systems Assumption:Integrating plants in this book do not have any open RHP poles.Those with poles in the open RHP are included in unstable plants.This assumption is made solely for simplicity of presentation Consider the feedback control loop in Figure,where G(s)is an integrating plant and C(s)is the controller 4口,+@,4定4=定0C Zhang,W.D..CRC Press.2011 Version 1.0 3/79
Section 7.1 The Feature of Integrating Systems 7.1 The Feature of Integrating Systems Assumption: Integrating plants in this book do not have any open RHP poles. Those with poles in the open RHP are included in unstable plants. This assumption is made solely for simplicity of presentation Consider the feedback control loop in Figure, where G(s) is an integrating plant and C(s) is the controller Zhang, W.D., CRC Press, 2011 Version 1.0 3/79

Section 7.1 The Feature of Integrating Systems Internal Stability The closed-loop system is internally stable if and only if all elements in the transfer matrix H(s)are stable: [图]=[周] where G(s)C(s) G(s) H(s)= 1+ G(s)C(s) 1+G(s)C(s) C(s) G(s)C(s) 1+G(s)C(s) 1+G(s)C(s) Since the Youla parameterization for stable plants cannot be used for integrating plants,the following transfer function is defined: Q(s)= C(s) 1+G(s)C(s) 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 4/79
Section 7.1 The Feature of Integrating Systems Internal Stability The closed-loop system is internally stable if and only if all elements in the transfer matrix H(s)are stable: y(s) u(s) = H(s) r(s) d 0 (s) where H(s) = G(s)C(s) 1 + G(s)C(s) G(s) 1 + G(s)C(s) C(s) 1 + G(s)C(s) −G(s)C(s) 1 + G(s)C(s) Since the Youla parameterization for stable plants cannot be used for integrating plants, the following transfer function is defined: Q(s) = C(s) 1 + G(s)C(s) Zhang, W.D., CRC Press, 2011 Version 1.0 4/79

Section 7.1 The Feature of Integrating Systems The transfer function Q(s)is in fact the IMC controller.Then the transfer matrix H(s)becomes H(s) G(s)Q(s)[1-G(s)Q(s)]G(s) Q(s) -G(s)Q(s) Since G(s)is not stable,the stability of Q(s)cannot guarantee the stability of the closed-loop system. Theorem Assume that G(s)is an integrating plant.The unity feedback loop shown in Figure is intemally stable if and only if D Q(s)is stable 1-G(s)Q(sG(s)is stable 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 5/79
Section 7.1 The Feature of Integrating Systems The transfer function Q(s) is in fact the IMC controller. Then the transfer matrix H(s) becomes H(s) = G(s)Q(s) [1 − G(s)Q(s)]G(s) Q(s) −G(s)Q(s) Since G(s) is not stable, the stability of Q(s) cannot guarantee the stability of the closed-loop system. Theorem Assume that G(s) is an integrating plant. The unity feedback loop shown in Figure is internally stable if and only if 1 Q(s) is stable. 2 [1 − G(s)Q(s)]G(s) is stable. Zhang, W.D., CRC Press, 2011 Version 1.0 5/79

Section 7.1 The Feature of Integrating Systems The transfer function Q(s)is in fact the IMC controller.Then the transfer matrix H(s)becomes H(s) = G(s)Q(s)[1-G(s)Q(s)]G(s) Q(s) -G(s)Q(s) Since G(s)is not stable,the stability of Q(s)cannot guarantee the stability of the closed-loop system. Theorem Assume that G(s)is an integrating plant.The unity feedback loop shown in Figure is internally stable if and only if ①Q(s)is stable [1-G(s)Q(s)]G(s)is stable 4口+@4定4生,定00 Zhang.W.D..CRC Press.2011 Version 1.0 5/79
Section 7.1 The Feature of Integrating Systems The transfer function Q(s) is in fact the IMC controller. Then the transfer matrix H(s) becomes H(s) = G(s)Q(s) [1 − G(s)Q(s)]G(s) Q(s) −G(s)Q(s) Since G(s) is not stable, the stability of Q(s) cannot guarantee the stability of the closed-loop system. Theorem Assume that G(s) is an integrating plant. The unity feedback loop shown in Figure is internally stable if and only if 1 Q(s) is stable. 2 [1 − G(s)Q(s)]G(s) is stable. Zhang, W.D., CRC Press, 2011 Version 1.0 5/79

Section 7.1 The Feature of Integrating Systems Proof. Necessity is obvious.Consider sufficiency.Assume that the two conditions hold.It remains to show that G(s)Q(s)is stable.If G(s)Q(s)is unstable,1-G(s)Q(s)is unstable,which implies that [1-G(s)Q(s)]G(s)must be unstable.This contradicts the assumption. The conclusion may not be applicable to other structures. Consider the IMC structure shown in Figure 4口,+回,424生,定9QC Zhang.W.D..CRC Press.2011 Version 1.0 6/79
Section 7.1 The Feature of Integrating Systems Proof. Necessity is obvious. Consider sufficiency. Assume that the two conditions hold. It remains to show that G(s)Q(s) is stable. If G(s)Q(s) is unstable, 1 − G(s)Q(s) is unstable, which implies that [1 − G(s)Q(s)]G(s) must be unstable. This contradicts the assumption. The conclusion may not be applicable to other structures. Consider the IMC structure shown in Figure Zhang, W.D., CRC Press, 2011 Version 1.0 6/79

Section 7.1 The Feature of Integrating Systems When the model is exact,the system is open-loop for G(s)and Q(s).Since G(s)is unstable and G(s)Q(s)is stable,there must exist closed RHP zero-pole cancellation between G(s)and Q(s). In this case,the closed-loop system is not internally stable Consequently,the IMC structure cannot be used for the control of integrating plants 4口,+@,4定4定90C Zhang.W.D..CRC Press.2011 Version 1.0 7/79
Section 7.1 The Feature of Integrating Systems When the model is exact, the system is open-loop for G(s) and Q(s). Since G(s) is unstable and G(s)Q(s) is stable, there must exist closed RHP zero-pole cancellation between G(s) and Q(s). In this case, the closed-loop system is not internally stable Consequently, the IMC structure cannot be used for the control of integrating plants Zhang, W.D., CRC Press, 2011 Version 1.0 7/79

Section 7.1 The Feature of Integrating Systems Steady-state Performance Consider the first-order integrating plant: G(s)-Ke-0s where K is the gain,0 is the time delay.Assume that the disturbance at the plant input is d'(s)=1/s.The effect of d'(s) on the system output can be equivalent to that of a disturbance d(s)at the plant output: 同=d)G=。 K It is seen that the system is in fact of Type 2.Only when the controller is designed for ramps,can the steady-state error caused by d'(s)vanish asymptotically 定9aC Zhang,W.D..CRC Press.2011 Version 1.0 8/79
Section 7.1 The Feature of Integrating Systems Steady-state Performance Consider the first-order integrating plant: G(s) = K s e −θs where K is the gain, θ is the time delay. Assume that the disturbance at the plant input is d 0 (s) = 1/s. The effect of d 0 (s) on the system output can be equivalent to that of a disturbance d(s) at the plant output: d(s) = d 0 (s)G(s) = K s 2 e −θs It is seen that the system is in fact of Type 2. Only when the controller is designed for ramps, can the steady-state error caused by d 0 (s) vanish asymptotically Zhang, W.D., CRC Press, 2011 Version 1.0 8/79

Section 7.1 The Feature of Integrating Systems In general,if the plant has m poles at the origin,the system should be of Type m+1 for asymptotic tracking;or equivalently,the controller has to satisfy lim →0 1-G(s)Q(5=0,k=0,1,,m sk or 0dsx1-G(s)Q(s=0,k=0,1,m lim This conclusion is very important in the design of systems with integrating plants Derivatives of a function are frequently calculated in the design of systems with integrating plants.To avoid complicated computation,two algebra results are given here 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 9/79
Section 7.1 The Feature of Integrating Systems In general, if the plant has m poles at the origin, the system should be of Type m + 1 for asymptotic tracking; or equivalently, the controller has to satisfy lim s→0 1 − G(s)Q(s) s k = 0, k = 0, 1, ..., m or lim s→0 d k dsk [1 − G(s)Q(s)] = 0, k = 0, 1, ..., m This conclusion is very important in the design of systems with integrating plants Derivatives of a function are frequently calculated in the design of systems with integrating plants. To avoid complicated computation, two algebra results are given here Zhang, W.D., CRC Press, 2011 Version 1.0 9/79
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 06 Control of Stable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 05 H2 PID Controllers for Stable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 04 H∞ PID Controllers for Stable.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 03 Essentials of Robust Control.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 02 Classical Analysis Methods.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 01 Introduction(上海交通大学:张卫东).pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 08 Advanced Loopshaping.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 07 Loopshaping.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 06 Design Constraints.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 05 Stabilization.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 04 Uncertainty and Robustness.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 03 Basic Concepts.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 02 Norms for Signals and Systems.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 10 Design for Performance.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 01 Introduction.pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(4/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(3/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(2/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(1/4).pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源_课前预习任务列表.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 08 Control of Unstable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 09 Complex Control Strategies.pdf
- 《控制理论》课程教学资源(参考书籍)Morari M, Zafiriou E.《Robust Process Control》(1/2).pdf
- 《控制理论》课程教学资源(参考书籍)Morari M, Zafiriou E.《Robust Process Control》(2/2).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第一章 绪论(主讲:杨博).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第二章 经典控制理论(数学模型).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第三章 经典控制理论——时域分析.pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第四章 经典控制理论与方法(频域方法).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第五章 经典控制理论(系统校正).pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第一章 绪论.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第二章 状态空间描述.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第三章 线性系统的响应分析.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第四章 能控性和能观性.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第五章 系统稳定性.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第六章 状态反馈与最优控制.pdf
- 上海交通大学:《控制理论》课程教学资源_控制理论教学资料(实验指导)机器人系统实验指导(旋转倒立摆工作原理及基本操作).pdf
- 上海交通大学:《控制理论》课程教学资源_控制理论教学资料(实验指导)随动系统实验指导书(学生版).pdf
- 上海交通大学:《现代控制理论基础》课程教学资源(课件讲稿)第一章 线性系统的数学描述.ppt
- 上海交通大学:《现代控制理论基础》课程教学资源(课件讲稿)第三章 系统的稳定性.pdf
- 上海交通大学:《现代控制理论基础》课程教学资源(课件讲稿)第二章 线性系统的状态响应和输出响应.pdf