《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 05 H2 PID Controllers for Stable Plants

Chapter 5 H2 PID Controllers for Stable Plants 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 1/78
Chapter 5 H2 PID Controllers for Stable Plants Zhang, W.D., CRC Press, 2011 Version 1.0 1/78

H2 PID Controllers for Stable Plants 15.1 H2 PID Controllers for the First-Order Plant 25.2 Quantitative Tuning of H2 PID Controllers 35.3 H2 PID Controllers for the Second-Order Plant 45.4 Control of Inverse Response Processes 55.5 PID Controllers Based on the Maclaurin Series Expansion 65.6 PID Controllers with the Best Achievable Performance 75.7 Choice of the Filter 4口,+@,4定4定0C Zhang.W.D..CRC Press.2011 Version 1.0 2/78
H2 PID Controllers for Stable Plants 1 5.1 H2 PID Controllers for the First-Order Plant 2 5.2 Quantitative Tuning of H2 PID Controllers 3 5.3 H2 PID Controllers for the Second-Order Plant 4 5.4 Control of Inverse Response Processes 5 5.5 PID Controllers Based on the Maclaurin Series Expansion 6 5.6 PID Controllers with the Best Achievable Performance 7 5.7 Choice of the Filter Zhang, W.D., CRC Press, 2011 Version 1.0 2/78

Section 5.1 H2 PID Controllers for the First-Order Plant 5.1 H2 PID Controllers for the First-Order Plant An analog of Hoo optimal control theory:H2 optimal control theory Assume that the plant is Ke-0s G(s)= Ts+1 Using the Youla parameterization,we have C(s)= Q(s) 1-G(s)Q(s) where Q(s)is a stable transfer function.It is difficult to treat e-s analytically.Approximate it by the 1/1 Pade approximant: G(S)≈K 1-0s/2 (rs+1)(1+0s/2) 4口+@4定4定0C Zhang.W.D..CRC Press.2011 Version 1.0 3/78
Section 5.1 H2 PID Controllers for the First-Order Plant 5.1 H2 PID Controllers for the First-Order Plant An analog of H∞ optimal control theory: H2 optimal control theory Assume that the plant is G(s) = Ke−θs τ s + 1 Using the Youla parameterization, we have C(s) = Q(s) 1 − G(s)Q(s) where Q(s) is a stable transfer function. It is difficult to treat e −θs analytically. Approximate it by the 1/1 Pade approximant: G(s) ≈ K 1 − θs/2 (τ s + 1)(1 + θs/2) Zhang, W.D., CRC Press, 2011 Version 1.0 3/78

Section 5.1 H2 PID Controllers for the First-Order Plant The design procedure for the H2 PID controller is similar to that for the Hoo PID controller.The controller is first designed for the approximate plant and then used to control the original plant The H2 optimal index is minW(s)s(s)2 where W(s)is the weighting function.Assume that the system input is a unit step.In view of the discussion in Section 3.2,the weighting function in H2 optimal control should be chosen so that the input is normalized to an impulse,that is,d(s)/W(s)=1. Then,W(s)=1/s. W(s)has a pole on the imaginary axis.To guarantee a finite 2-norm and to have the asymptotic property.a constraint has to be imposed on the design lim S(s)=lim 1-G(s)Q(s=0 40 540 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 4/78
Section 5.1 H2 PID Controllers for the First-Order Plant The design procedure for the H2 PID controller is similar to that for the H∞ PID controller. The controller is first designed for the approximate plant and then used to control the original plant The H2 optimal index is min kW (s)S(s)k2 where W (s) is the weighting function. Assume that the system input is a unit step. In view of the discussion in Section 3.2, the weighting function in H2 optimal control should be chosen so that the input is normalized to an impulse, that is, kd(s)/W (s)k2 = 1. Then, W (s) = 1/s. W (s) has a pole on the imaginary axis. To guarantee a finite 2-norm and to have the asymptotic property, a constraint has to be imposed on the design: lim s→0 S(s) = lim s→0 [1 − G(s)Q(s)] = 0 Zhang, W.D., CRC Press, 2011 Version 1.0 4/78

Section 5.1 H2 PID Controllers for the First-Order Plant The design procedure for the H2 PID controller is similar to that for the Hoo PID controller.The controller is first designed for the approximate plant and then used to control the original plant The H2 optimal index is min llW(s)S(s)ll2 where W(s)is the weighting function.Assume that the system input is a unit step.In view of the discussion in Section 3.2,the weighting function in H2 optimal control should be chosen so that the input is normalized to an impulse,that is,ld(s)/W(s)2=1. Then,W(s)=1/s. W(s)has a pole on the imaginary axis.To guarantee a finite 2-norm and to have the asymptotic property,a constraint has to be imposed on the design: lim S(s)=lim[1-G(s)Q(s)]=0 s→0 5→0 4口,+心4定4生定分QC Zhang.W.D..CRC Press.2011 Version 1.0 4/78
Section 5.1 H2 PID Controllers for the First-Order Plant The design procedure for the H2 PID controller is similar to that for the H∞ PID controller. The controller is first designed for the approximate plant and then used to control the original plant The H2 optimal index is min kW (s)S(s)k2 where W (s) is the weighting function. Assume that the system input is a unit step. In view of the discussion in Section 3.2, the weighting function in H2 optimal control should be chosen so that the input is normalized to an impulse, that is, kd(s)/W (s)k2 = 1. Then, W (s) = 1/s. W (s) has a pole on the imaginary axis. To guarantee a finite 2-norm and to have the asymptotic property, a constraint has to be imposed on the design: lim s→0 S(s) = lim s→0 [1 − G(s)Q(s)] = 0 Zhang, W.D., CRC Press, 2011 Version 1.0 4/78

Section 5.1 H2 PID Controllers for the First-Order Plant In other words,S(s)must have a zero at the origin to cancel the pole of W(s).This gives 1 Q(0)=G(0)=K It should be emphasized that the constraint is also required for asymptotic tracking.The set of all Q(s)s satisfying the constraint can be written as 1 Q(s)=衣+sQ1(s where Q1(s)is stable.The function to be minimized is lIW(s)s(s)Il2 w-Gw层+o( 0rs/2+(0+T) K(1-0s/2) (1)(0/211)02() 定0QC Zhang.W.D..CRC Press.2011 Version 1.0 5/78
Section 5.1 H2 PID Controllers for the First-Order Plant In other words, S(s) must have a zero at the origin to cancel the pole of W (s). This gives Q(0) = 1 G(0) = 1 K It should be emphasized that the constraint is also required for asymptotic tracking. The set of all Q(s)s satisfying the constraint can be written as Q(s) = 1 K + sQ1(s) where Q1(s) is stable. The function to be minimized is kW (s)S(s)k 2 2 = W (s) 1 − G(s) 1 K + sQ1(s) 2 2 = θτ s/2 + (θ + τ ) (τ s + 1)(θs/2 + 1) − K(1 − θs/2) (τ s + 1)(1 + θs/2)Q1(s) 2 2 Zhang, W.D., CRC Press, 2011 Version 1.0 5/78

Section 5.1 H2 PID Controllers for the First-Order Plant 1-0s/2 0rs/2+(0+T) K 1+0s/2L(rs+1)(1-0s/2) (1-0s/2)/(1+0s/2)in the equation is an all-pass transfer function.With the definition of 2-norm,it is easy to verify that the 2-norm of a transfer function keeps its value after introducing an all-pass transfer function to it.Therefore, wase-西+t动-gao 2 As we known,by partial fraction expansion a strictly proper transfer function without poles on the imaginary axis can always be uniquely expressed as a stable part(which does not have poles in Re s >0)and an unstable part(which does not have poles in Re 5<0: 240 Zhang,W.D..CRC Press.2011 Version 1.0 6/78
Section 5.1 H2 PID Controllers for the First-Order Plant = 1 − θs/2 1 + θs/2 θτ s/2 + (θ + τ ) (τ s + 1)(1 − θs/2) − K τ s + 1 Q1(s) 2 2 (1 − θs/2)/(1 + θs/2) in the equation is an all-pass transfer function. With the definition of 2-norm, it is easy to verify that the 2-norm of a transfer function keeps its value after introducing an all-pass transfer function to it. Therefore, kW (s)S(s)k 2 2 = θτ s/2 + (θ + τ ) (τ s + 1)(1 − θs/2) − K τ s + 1 Q1(s) 2 2 As we known, by partial fraction expansion a strictly proper transfer function without poles on the imaginary axis can always be uniquely expressed as a stable part (which does not have poles in Re s > 0) and an unstable part (which does not have poles in Re s < 0): Zhang, W.D., CRC Press, 2011 Version 1.0 6/78

Section 5.1 H2 PID Controllers for the First-Order Plant 0rs/2+(0+T) 8 (Ts+1)(1-0s/2)=1-0s/2 +5+1 Then W()S()0.( Temporarily relax the requirement on the properness of Q(s).To obtain the minimum,the only choice is Qion(句=R Consequently,the optimal Q(s)is 0m间=5k2 4口:4@4242定9QC Zhang.W.D..CRC Press.2011 Version 1.0 7/78
Section 5.1 H2 PID Controllers for the First-Order Plant θτ s/2 + (θ + τ ) (τ s + 1)(1 − θs/2) = θ 1 − θs/2 + τ τ s + 1 Then kW (s)S(s)k 2 2 = θ 1 − θs/2 2 2 + τ τ s + 1 − K τ s + 1 Q1(s) 2 2 Temporarily relax the requirement on the properness of Q(s). To obtain the minimum, the only choice is Q1opt(s) = τ K Consequently, the optimal Q(s) is Qopt(s) = τ s + 1 K Zhang, W.D., CRC Press, 2011 Version 1.0 7/78

Section 5.1 H2 PID Controllers for the First-Order Plant Q(s)should be proper.Use the following filter to roll the improper solution off: 1 J5)=λ5+1 where A is the performance degree.It is a positive real number. The suboptimal Q(s)is Q(s)=Qopt:(s)J(s)=K(A5+1) Ts+1 Since Q(0)=1/K,Q(s)satisfies the constraint for asymptotic tracking.The unity feedback loop controller is Q(s) 1(Ts+1)(1+0s/2) C(5)=1-G(5)Q(s)-K0Xs2/2+(+0)s 4口:4@4242定9QC Zhang.W.D..CRC Press.2011 Version 1.0 8/78
Section 5.1 H2 PID Controllers for the First-Order Plant Q(s) should be proper. Use the following filter to roll the improper solution off: J(s) = 1 λs + 1 where λ is the performance degree. It is a positive real number. The suboptimal Q(s) is Q(s) = Qopt(s)J(s) = τ s + 1 K(λs + 1) Since Q(0) = 1/K, Q(s) satisfies the constraint for asymptotic tracking. The unity feedback loop controller is C(s) = Q(s) 1 − G(s)Q(s) = 1 K (τ s + 1)(1 + θs/2) θλs 2/2 + (λ + θ)s Zhang, W.D., CRC Press, 2011 Version 1.0 8/78

Section 5.1 H2 PID Controllers for the First-Order Plant Comparing the controller with c=k(++o)n gives that =20+1=+20= 0,Kc=K(X+0) If the following form is chosen: c=k(++) the parameters of the PID controller are 0入 TF- 2+0万=+2TF,TD=2 T-TF,Kc=K(X+0) 定QC0 Zhang.W.D..CRC Press.2011 Version 1.0 9/78
Section 5.1 H2 PID Controllers for the First-Order Plant Comparing the controller with C = KC 1 + 1 TIs + TDs 1 TF s + 1 gives that TF = θλ 2(λ + θ) ,TI = τ + θ 2 ,TD = θτ 2TI ,KC = TI K(λ + θ) If the following form is chosen: C(s) = KC 1 + 1 TIs + TDs TF s + 1 the parameters of the PID controller are TF = θλ 2(λ + θ) ,TI = τ + θ 2 −TF ,TD = θτ 2TI −TF ,KC = TI K(λ + θ) Zhang, W.D., CRC Press, 2011 Version 1.0 9/78
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 04 H∞ PID Controllers for Stable.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 03 Essentials of Robust Control.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 02 Classical Analysis Methods.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 01 Introduction(上海交通大学:张卫东).pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 08 Advanced Loopshaping.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 07 Loopshaping.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 06 Design Constraints.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 05 Stabilization.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 04 Uncertainty and Robustness.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 03 Basic Concepts.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 02 Norms for Signals and Systems.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 10 Design for Performance.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 01 Introduction.pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(4/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(3/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(2/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(1/4).pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源_课前预习任务列表.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源_实验指导书.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源_复习提纲.doc
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 06 Control of Stable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 07 Control of Integrating Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 08 Control of Unstable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 09 Complex Control Strategies.pdf
- 《控制理论》课程教学资源(参考书籍)Morari M, Zafiriou E.《Robust Process Control》(1/2).pdf
- 《控制理论》课程教学资源(参考书籍)Morari M, Zafiriou E.《Robust Process Control》(2/2).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第一章 绪论(主讲:杨博).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第二章 经典控制理论(数学模型).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第三章 经典控制理论——时域分析.pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第四章 经典控制理论与方法(频域方法).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第五章 经典控制理论(系统校正).pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第一章 绪论.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第二章 状态空间描述.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第三章 线性系统的响应分析.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第四章 能控性和能观性.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第五章 系统稳定性.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第六章 状态反馈与最优控制.pdf
- 上海交通大学:《控制理论》课程教学资源_控制理论教学资料(实验指导)机器人系统实验指导(旋转倒立摆工作原理及基本操作).pdf
- 上海交通大学:《控制理论》课程教学资源_控制理论教学资料(实验指导)随动系统实验指导书(学生版).pdf
- 上海交通大学:《现代控制理论基础》课程教学资源(课件讲稿)第一章 线性系统的数学描述.ppt