《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 06 Control of Stable Plants

Chapter 6 Control of Stable Plants 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 1/74
Chapter 6 Control of Stable Plants Zhang, W.D., CRC Press, 2011 Version 1.0 1/74

Control of Stable Plants 16.1 The Quasi-Ho Smith Predictor 26.2 The H2 Optimal Controller and the Smith Predictor 36.3 Equivalents of the Optimal Controller 46.4 The PID Controller and High-Order Controllers 56.5 Choice of Weighting Functions 66.6 Simplified Tuning for Quantitative Robustness 4口,+@,4定4定90C Zhang.W.D..CRC Press.2011 Version 1.0 2/74
Control of Stable Plants 1 6.1 The Quasi-H∞ Smith Predictor 2 6.2 The H2 Optimal Controller and the Smith Predictor 3 6.3 Equivalents of the Optimal Controller 4 6.4 The PID Controller and High-Order Controllers 5 6.5 Choice of Weighting Functions 6 6.6 Simplified Tuning for Quantitative Robustness Zhang, W.D., CRC Press, 2011 Version 1.0 2/74

Section 6.1 The Quasi-Ho Smith Predictor 6.1 The Quasi-Ho Smith Predictor Chapter 4 and Chapter 5:The controller is analytically designed by minimizing the weighted sensitivity function This section:The controller is analytically designed by specifying the desired closed-loop response Actually,a simplified version of this method was already used in Sections 5.5 and 5.6 Consider the diagram of the Smith predictor in Figure,where G(s) is the plant,G(s)is its model,and Go(s)is the delay-free part of G(s).If the closed-loop transfer function T(s)is known,the controller of the Smith predictor is T(s) R(s)= G(s)-T(s)Go(s) 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 3/74
Section 6.1 The Quasi-H∞ Smith Predictor 6.1 The Quasi-H∞ Smith Predictor Chapter 4 and Chapter 5: The controller is analytically designed by minimizing the weighted sensitivity function This section: The controller is analytically designed by specifying the desired closed-loop response Actually, a simplified version of this method was already used in Sections 5.5 and 5.6 Consider the diagram of the Smith predictor in Figure, where G˜ (s) is the plant, G(s) is its model, and Go(s) is the delay-free part of G(s). If the closed-loop transfer function T(s) is known, the controller of the Smith predictor is R(s) = T(s) G(s) − T(s)Go(s) Zhang, W.D., CRC Press, 2011 Version 1.0 3/74

Section 6.1 The Quasi-Ho Smith Predictor 6.1 The Quasi-Ho Smith Predictor Chapter 4 and Chapter 5:The controller is analytically designed by minimizing the weighted sensitivity function This section:The controller is analytically designed by specifying the desired closed-loop response Actually,a simplified version of this method was already used in Sections 5.5 and 5.6 Consider the diagram of the Smith predictor in Figure,where G(s) is the plant,G(s)is its model,and Go(s)is the delay-free part of G(s).If the closed-loop transfer function T(s)is known,the controller of the Smith predictor is T(s) R(6)=G(3)-T(s)G.(5) 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 3/74
Section 6.1 The Quasi-H∞ Smith Predictor 6.1 The Quasi-H∞ Smith Predictor Chapter 4 and Chapter 5: The controller is analytically designed by minimizing the weighted sensitivity function This section: The controller is analytically designed by specifying the desired closed-loop response Actually, a simplified version of this method was already used in Sections 5.5 and 5.6 Consider the diagram of the Smith predictor in Figure, where G˜ (s) is the plant, G(s) is its model, and Go(s) is the delay-free part of G(s). If the closed-loop transfer function T(s) is known, the controller of the Smith predictor is R(s) = T(s) G(s) − T(s)Go(s) Zhang, W.D., CRC Press, 2011 Version 1.0 3/74

Section 6.1 The Quasi-Ho Smith Predictor R G G-G Figure:Diagram of the Smith predictor Key of the design How to choose the desired closed-loop transfer function To introduce the idea clearly,the simplest case is considered first. The general result will be inductively derived 定00 Zhang.W.D..CRC Press.2011 Version 1.0 4/74
Section 6.1 The Quasi-H∞ Smith Predictor Figure: Diagram of the Smith predictor Key of the design How to choose the desired closed-loop transfer function To introduce the idea clearly, the simplest case is considered first. The general result will be inductively derived Zhang, W.D., CRC Press, 2011 Version 1.0 4/74

Section 6.1 The Quasi-Ho Smith Predictor Case 1: Consider the following stable rational plant of MP: KN_(s) G(5)=M-(5) where K is the gain,N-(s)and M-(s)are the polynomials with roots in the LHP,N_(0)=M-(0)=1,and deg{N-}<deg{M-}. It is easy to control such a plant.For the Hoo performance index and the weighting function W(s)=1/s we have llW(s)s(s)ll lW(s)[1-G(s)Q(s)]lloo ≥0 The following controller is the optimal one: Qopt(s)= M_(s) KN_(s) 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 5/74
Section 6.1 The Quasi-H∞ Smith Predictor Case 1: Consider the following stable rational plant of MP: G(s) = KN−(s) M−(s) where K is the gain, N−(s) and M−(s) are the polynomials with roots in the LHP, N−(0) = M−(0) = 1, and deg{N−} ≤ deg{M−}. It is easy to control such a plant. For the H∞ performance index and the weighting function W (s) = 1/s we have kW (s)S(s)k∞ = kW (s)[1 − G(s)Q(s)]k∞ ≥ 0 The following controller is the optimal one: Qopt(s) = M−(s) KN−(s) Zhang, W.D., CRC Press, 2011 Version 1.0 5/74

Section 6.1 The Quasi-Ho Smith Predictor Introduce the filter J(s)= 1 (As+1)9 where A is the performance degree.In light of the discussion in Section 5.7,nj is chosen as follows: 可={eM}-eM}日eM产eN} deg{M_}deg{N_} The suboptimal proper controller is M_(s) Q(S)=KN-(5)s+1” The closed-loop transfer function is 1 T(s)=7 s+1)% 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 6/74
Section 6.1 The Quasi-H∞ Smith Predictor Introduce the filter J(s) = 1 (λs + 1)nj where λ is the performance degree. In light of the discussion in Section 5.7, nj is chosen as follows: nj = deg{M−} − deg{N−} deg{M−} > deg{N−} 1 deg{M−} = deg{N−} The suboptimal proper controller is Q(s) = M−(s) KN−(s)(λs + 1)nj The closed-loop transfer function is T(s) = 1 (λs + 1)nj Zhang, W.D., CRC Press, 2011 Version 1.0 6/74

Section 6.1 The Quasi-Ho Smith Predictor Case 2: Consider a bit more complex case.Assume that the plant has a zero in the RHP: Gs)=KW-(s-2s+1) M-(s) where z>0,N_(0)=M_(0)=1,and deg{N-+1<deg{M-).Solve the weighted sensitivity problem again: llW(s)S(s)ll=lIW(s)[1-G(s)Q(s)]ll ≥IW(z)I The optimal controller is obtained as follows: Qopt(s)= M-(s) KN_(s) 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 7/74
Section 6.1 The Quasi-H∞ Smith Predictor Case 2: Consider a bit more complex case. Assume that the plant has a zero in the RHP: G(s) = KN−(s)(−z −1 r s + 1) M−(s) where zr > 0, N−(0) = M−(0) = 1, and deg{N−} + 1 ≤ deg{M−}. Solve the weighted sensitivity problem again: kW (s)S(s)k∞ = kW (s)[1 − G(s)Q(s)]k∞ ≥ |W (zr)| The optimal controller is obtained as follows: Qopt(s) = M−(s) KN−(s) Zhang, W.D., CRC Press, 2011 Version 1.0 7/74

Section 6.1 The Quasi-Ho Smith Predictor Introduce the following filter: J(5)= 1 (As+1)9 where nj=deg{M-}-deg{N_} The suboptimal proper controller is M_(s) Q(s)=KN_(s)(Xs+1)mi The closed-loop transfer function can be written as T(s)= -21s+1 (As+1) 4口,+@,4定4=定0C Zhang.W.D..CRC Press.2011 Version 1.0 8/74
Section 6.1 The Quasi-H∞ Smith Predictor Introduce the following filter: J(s) = 1 (λs + 1)nj where nj = deg{M−} − deg{N−} The suboptimal proper controller is Q(s) = M−(s) KN−(s)(λs + 1)nj The closed-loop transfer function can be written as T(s) = −z −1 r s + 1 (λs + 1)nj Zhang, W.D., CRC Press, 2011 Version 1.0 8/74

Section 6.1 The Quasi-Ho Smith Predictor Case 3: Now,consider the general stable rational plant described by G(s)= KN+(s)N_(s) M-(S) where N-(s)and M-(s)are the polynomials with roots in the LHP,N(s)is a polynomial with roots in the RHP, N+(0)=N_(0)=M_(0)=1,and deg{N++deg{N-}<deg{M-).As this is a rational plant, Go(s)=G(s) Motivated by the foregoing design procedures,the following function is chosen as the desired closed-loop transfer function: T(s)=N4(s)J(s) where J(s)is a filter 4口+@4定4生,定00 Zhang.W.D..CRC Press.2011 Version 1.0 9/74
Section 6.1 The Quasi-H∞ Smith Predictor Case 3: Now, consider the general stable rational plant described by G(s) = KN+(s)N−(s) M−(s) where N−(s) and M−(s) are the polynomials with roots in the LHP, N+(s) is a polynomial with roots in the RHP, N+(0) = N−(0) = M−(0) = 1, and deg{N+} + deg{N−} ≤ deg{M−}. As this is a rational plant, Go(s) = G(s) Motivated by the foregoing design procedures, the following function is chosen as the desired closed-loop transfer function: T(s) = N+(s)J(s) where J(s) is a filter Zhang, W.D., CRC Press, 2011 Version 1.0 9/74
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 05 H2 PID Controllers for Stable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 04 H∞ PID Controllers for Stable.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 03 Essentials of Robust Control.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 02 Classical Analysis Methods.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 01 Introduction(上海交通大学:张卫东).pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 08 Advanced Loopshaping.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 07 Loopshaping.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 06 Design Constraints.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 05 Stabilization.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 04 Uncertainty and Robustness.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 03 Basic Concepts.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 02 Norms for Signals and Systems.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 10 Design for Performance.pdf
- 《控制理论》课程教学资源(参考书籍)Feedback Control Theory_Chapter 01 Introduction.pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(4/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(3/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(2/4).pdf
- 《控制理论》课程教学资源(参考书籍)Essential of Robust Control Theory(1/4).pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源_课前预习任务列表.pdf
- 上海交通大学:《电气与电子测量技术》精品课程教学资源_实验指导书.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 07 Control of Integrating Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 08 Control of Unstable Plants.pdf
- 《控制理论》课程教学资源(参考书籍)定量过程控制理论 Quantitative Process Control Theory_Chapter 09 Complex Control Strategies.pdf
- 《控制理论》课程教学资源(参考书籍)Morari M, Zafiriou E.《Robust Process Control》(1/2).pdf
- 《控制理论》课程教学资源(参考书籍)Morari M, Zafiriou E.《Robust Process Control》(2/2).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第一章 绪论(主讲:杨博).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第二章 经典控制理论(数学模型).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第三章 经典控制理论——时域分析.pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第四章 经典控制理论与方法(频域方法).pdf
- 上海交通大学:《控制理论》课程教学资源(课件讲稿)第五章 经典控制理论(系统校正).pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第一章 绪论.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第二章 状态空间描述.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第三章 线性系统的响应分析.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第四章 能控性和能观性.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第五章 系统稳定性.pdf
- 上海交通大学:《现代控制理论 Modern Control Theory》课程教学资源(课件讲稿)第六章 状态反馈与最优控制.pdf
- 上海交通大学:《控制理论》课程教学资源_控制理论教学资料(实验指导)机器人系统实验指导(旋转倒立摆工作原理及基本操作).pdf
- 上海交通大学:《控制理论》课程教学资源_控制理论教学资料(实验指导)随动系统实验指导书(学生版).pdf
- 上海交通大学:《现代控制理论基础》课程教学资源(课件讲稿)第一章 线性系统的数学描述.ppt
- 上海交通大学:《现代控制理论基础》课程教学资源(课件讲稿)第三章 系统的稳定性.pdf