北京外国语大学:最优化方法(课件讲稿)Optimization Method(主讲:陈曦)

Optimization Method Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University 4口48+4三4至,至)只0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 1/41
Optimization Method Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 1 / 41

General Procedure General Procedure Modeling ③Solution Approach Linear Programming o Sensitivity Analysis Duality Theory o Commercial Softwares o Integer Programming Dynamic Programming o Game Theory OLTEX 4口4+4三4至,至)只0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 2/41
General Procedure 1 General Procedure 2 Modeling 3 Solution Approach Linear Programming Sensitivity Analysis Duality Theory Commercial Softwares Integer Programming Dynamic Programming Game Theory 4 LATEX Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 2 / 41

General Procedure o Problem Description 。Modeling ●Solution Approach o Computational Experiments and Analysis 4口40+4三4至,至)只0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 3/41
General Procedure Problem Description Modeling Solution Approach Computational Experiments and Analysis Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 3 / 41

Modeling General Procedure Modeling Solution Approach Linear Programming o Sensitivity Analysis Duality Theory o Commercial Softwares o Integer Programming Dynamic Programming o Game Theory OLTEX 4口4+4三4至,至)只0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 4/41
Modeling 1 General Procedure 2 Modeling 3 Solution Approach Linear Programming Sensitivity Analysis Duality Theory Commercial Softwares Integer Programming Dynamic Programming Game Theory 4 LATEX Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 4 / 41

Modeling Example 1 Giapetto's Woodcarving,Inc.,manufactures two types of wooden toys: soldiers and trains.Demand for trains is unlimited,but at most 40 soldiers are bought each week. A soldier sells for $27 and uses $10 worth of raw materials.Each soldier that is manufactured increases Giapetto's variable labor and overhead costs by $14.A train sells for $21 and uses $9 worth of raw materials.Each train built increases Giapetto's variable labor and overhead costs by $10. The manufacture of wooden soldiers and trains requires two types of skilled labor:carpentry and finishing.A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor.A train requires 1 hour of finishing and 1 hour of carpentry labor.Each week,Giapetto can obtain all the needed raw material but only 100 finishing hours and 80 carpentry hours. How to maximize Giapetto's weekly profit? Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 5/41
Modeling Example 1 Giapetto’s Woodcarving, Inc., manufactures two types of wooden toys: soldiers and trains. Demand for trains is unlimited, but at most 40 soldiers are bought each week. A soldier sells for $27 and uses $10 worth of raw materials. Each soldier that is manufactured increases Giapetto’s variable labor and overhead costs by $14. A train sells for $21 and uses $9 worth of raw materials. Each train built increases Giapetto’s variable labor and overhead costs by $10. The manufacture of wooden soldiers and trains requires two types of skilled labor: carpentry and finishing. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor. A train requires 1 hour of finishing and 1 hour of carpentry labor. Each week, Giapetto can obtain all the needed raw material but only 100 finishing hours and 80 carpentry hours. How to maximize Giapetto’s weekly profit? Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 5 / 41

Modeling o Decision Variables:The decision variables completely describe the decisions to be made.Denote by x1 the number of soldiers produced each week,and by x2 the number of trains produced each week. o Objective Function:The function to be maximized or minimized is called the objective function.Since fixed costs (such as rent and insurance)do not depend on the values of x1 and x2,Giapetto can concentrate on maximizing his weekly profit,i.e.. max3x灯+2x2. ●Constraints: Each week,no more than 100 hours of finishing time may be used. Each week,no more than 80 hours of carpentry time may be used. Because of limited demand,at most 40 soldiers should be produced each week. 2x1+2≤100,为+9≤80,x1≤40. o Sign Restrictions:x为≥0andx2≥0. 0Q0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 6/41
Modeling Decision Variables: The decision variables completely describe the decisions to be made. Denote by x1 the number of soldiers produced each week, and by x2 the number of trains produced each week. Objective Function: The function to be maximized or minimized is called the objective function. Since fixed costs (such as rent and insurance) do not depend on the values of x1 and x2, Giapetto can concentrate on maximizing his weekly profit, i.e., max 3x1 + 2x2. Constraints: 1 Each week, no more than 100 hours of finishing time may be used. 2 Each week, no more than 80 hours of carpentry time may be used. 3 Because of limited demand, at most 40 soldiers should be produced each week. 2x1 + x2 ≤ 100, x1 + x2 ≤ 80, x1 ≤ 40. Sign Restrictions: x1 ≥ 0 and x2 ≥ 0. Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 6 / 41

Solution Approach General Procedure Modeling ③Solution Approach Linear Programming o Sensitivity Analysis Duality Theory o Commercial Softwares o Integer Programming Dynamic Programming o Game Theory OLTEX 4口,4得+4艺至,三风0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 7/41
Solution Approach 1 General Procedure 2 Modeling 3 Solution Approach Linear Programming Sensitivity Analysis Duality Theory Commercial Softwares Integer Programming Dynamic Programming Game Theory 4 LATEX Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 7 / 41

Solution Approach o Linear Programming (LP) o Integer Programming (IP) o Dynamic Programming(DP) ●Game Theory 4口,4得+4之,至三双0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 8/41
Solution Approach Linear Programming (LP) Integer Programming (IP) Dynamic Programming (DP) Game Theory Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 8 / 41

Solution Approach Linear Programming General Procedure Modeling ③Solution Approach ●Linear Programming o Sensitivity Analysis Duality Theory o Commercial Softwares o Integer Programming Dynamic Programming o Game Theory OLTEX 4口,4得+4艺至,三风0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 9/41
Solution Approach Linear Programming 1 General Procedure 2 Modeling 3 Solution Approach Linear Programming Sensitivity Analysis Duality Theory Commercial Softwares Integer Programming Dynamic Programming Game Theory 4 LATEX Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 9 / 41

Solution Approach Linear Programming oSimplex Method: The Big M Method The Two-Phase Simplex Method oSensitivity Analysis ●Duality 4口,4得+4之,至三风0 Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 10/41
Solution Approach Linear Programming Simplex Method: The Big M Method The Two-Phase Simplex Method Sensitivity Analysis Duality Xi Chen (chenxi0109@bfsu.edu.cn) Optimization Method 10 / 41
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第四篇 金融发展与稳定 第十四章 金融与经济发展.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第三篇 金融调控 第十二章 货币政策.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第三篇 金融调控 第十三章 开放经济的均衡.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第三篇 金融调控 第十一章 通货膨胀和通货紧缩.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第三篇 金融调控 第十章 货币需求.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第二篇 金融市场与金融机构 第八章 中央银行.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第三篇 金融调控 第九章 货币供给.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第二篇 金融市场与金融机构 第六章 商业银行业务与管理.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第二篇 金融市场与金融机构 第七章 非银行金融机构.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第二篇 金融市场与金融机构 第五章 金融市场.ppt
- 华东理工大学:《货币银行学》课程教学资源(PPT课件讲稿)第一篇 总论 第一章 货币的涵义、职能和形式(主讲:刘建国、杨娥).ppt
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)15 金融稳定.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)14 金融与经济发展.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)13 开放经济的均衡.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)12 货币政策.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)11 通货膨胀.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)10 货币需求.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)09 货币供给.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)08 中央银行.pdf
- 华东理工大学:《货币银行学》课程教学资源(学习指导书)07 非银行金融机构.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(教学大纲,上)Syllabus(主讲:陈曦).pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,上)第1章 函数、极限、连续.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,上)第2章 一元函数微分学.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,上)第3章 一元函数积分学.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,上)第4章 二元函数(二元函数的图象).pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,上)第4章 二元函数(二元函数微积分).pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,上)第4章 二元函数(多元函数的极值及其求法).pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,下)线性代数 Linear Algebra 第一章 行列式.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,下)线性代数 Linear Algebra 第一章 行列式.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,下)线性代数 Linear Algebra 第二章 矩阵.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,下)概率 Probability 第一章 随机试验.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,下)概率 Probability 排列组合.pdf
- 北京外国语大学:《经济数学 Mathematics in Economics》课程教学资源(课件讲稿,下)概率 Probability 第二章 随机变量.pdf
- 北京外国语大学:《投资科学 Investment Sciences》课程教学资源(课件讲稿)Introduction(主讲:陈曦).pdf
- 北京外国语大学:《投资科学 Investment Sciences》课程教学资源(课件讲稿)Part I Deterministic Cash Flow Streams.pdf
- 北京外国语大学:《投资科学 Investment Sciences》课程教学资源(课件讲稿)Part II Single-Period Random Cash Flows.pdf
- 北京外国语大学:《计量经济学》课程教学资源(典型例题分析)第二章 经典单方程计量经济学模型(一元线性回归模型).pdf
- 北京外国语大学:《计量经济学》课程教学资源(典型例题分析)第二章 经典单方程计量经济学模型(多元线性回归模型).pdf
- 华东理工大学:《保险学》课程教学资源(学习指导书)导论 Insurance.pdf
- 华东理工大学:《保险学》课程教学资源(学习指导书)第一章 风险与保险.pdf