《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 8 Fouriers derivation of the ct fourier transform

Signals and Systems Fall 2003 Lecture#8 30 September 2003 1. Derivation of the Ct Fourier Transform pair Examples of Fourier Transforms 3. Fourier Transforms of Periodic signals 4. Properties of the CT Fourier transform
Signals and Systems Fall 2003 Lecture #8 30 September 2003 1. Derivation of the CT Fourier Transform pair 2. Examples of Fourier Transforms 3. Fourier Transforms of Periodic Signals 4. Properties of the CT Fourier Transform

Fouriers derivation of the ct Fourier transform x(t)-an aperiodic signal view it as the limit of a periodic signal as T'→>∞ For a periodic signal, the harmonic components are spaced Oo=2π/ T apart ·AST→∞,n→0, and harmonic components are spaced closer and closer in frequency Fourier series - Fourier integral
Fourier’s Derivation of the CT Fourier Transform • x ( t) - an aperiodic signal - view it as the limit of a periodic signal as T → ∞ • For a periodic signal, the harmonic components are spaced ω 0 = 2 π/T apart ... • A s T → ∞, ω0 → 0, and harmonic components are spaced closer and closer in frequency ⇓ Fourier series ⎯ ⎯ → Fourier integral

Motivating Example: Square wave Increases T T=4T1 ept fixed 2 sin(hwoT1 200 kwoN frequency T=8T1 pc become 40 4 enser in 2 sintI ”0 oas T k Increases w=kwo -8 800 mmN0V←mwum
Discrete frequency points become denser in ω as T increases Motivating Example: Square wave increases kept fixed

So on with the derivation x(t) For simplicity, assume x(t has a finite duration here 2<t X periodic -2T 0 T1 T 2T T/2 T/2 as T c(t=a(t) for all t
So, on with the derivation ... For simplicity, assume x ( t) has a finite duration

Derivation(continued) ∑ ake T k swot 已 clte swot (t)=a(t) in this inte kwo t If we define X(w) lte jut dt then Eq (1) Hwo)
Derivation (continued)

Derivation(continued) Thus. for T <t< T X(jkwo)e kwot k= k ∑nX(ko) AsT→∞,∑0→∫du, we get the Ct Fourier Transform pair weSt dw Synthesis equation T X(j)= co e(t)e-jut dt Analysis equation
Derivation (continued)

For what kinds of signals can we do this? (1) It works also even if x()is infinite duration, but satisfies a) Finite energy a(t) dt In this case there is zero energy in the error (t)=(t) lewT dw Then b) dirichlet conditions 1 a(t) at points of continuity (i)2 oo X(w)ejt dw= midpoint at discontinuity (iii) Gibb's phe c) By allowing impulses in x(t)or in Xgo), we can represent even more signals E. g. It allows us to consider Ft for periodic signals
a) Finite energy In this case, there is zero energy in the error For what kinds of signals can we do this? (1) It works also even if x(t) is infinite duration, but satisfies: E.g. It allows us to consider FT for periodic signals c) By allowing impulses in x(t) or in X(jω), we can represent even more signals b) Dirichlet conditions

Example #1 (a)m(t)=6( X(j)=/6(te-ot=1 6(t) 2丌J-∞ Synthesis equation for d(t) (b)x(t)=6(t-to) (t-toe Judt
Example #1 (a) (b)

Example #2: Exponential function e u(t),a> 1/a X(w c(te cte- jwt dt e-(a+ju)t )t at3 atW X(jo)=1/(a2+o) ∠Ⅹ(j0)=tan(oa) π/2 1/a 兀/4 1/ay2 a a a a /2 Even symmetry Odd symmetry
Example #2: Exponential function Even symmetry Odd symmetry

Example #3: a square pulse in the time-domain SIn w X(w) X(o) 2T xO /1TT1 Note the inverse relation between the two widths Uncertainty principle Useful facts about ctft's a(tdt Example above:/ a(t)dt=2T1=X( XGw) Ex. above: 2(0 X(ju) (Area of the triangle)
Example #3: A square pulse in the time-domain Useful facts about CTFT’s Note the inverse relation between the two widths ⇒ Uncertainty principle
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 6 CT Fourier Series Pairs.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 4 Representation of ct signals.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture5 Portrait of Jean Baptiste Joseph Fourier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 2 SYSTEM EXAMPLES.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture3 Exploiting Superposition and Time-Invariance.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture1 THE INDEPENDENT VARIABLES.pdf
- 《DSP硬件开发培训》讲义.pdf
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第五章 汇编语言编程举例.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第四章 DSP软件开发过程.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第三章 DSP指令系统与特点.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第二章 DSP芯片结构介绍.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第一章 DSP技术概述 Digital Signal Processor(主讲:陈金鹰).ppt
- 《信号与系统》试卷集锦及参考答案.pdf
- 《模拟电子线路》课程教学资源(各章题解)第9章 功率放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第8章 波形的发生和信号的转换.doc
- 《模拟电子线路》课程教学资源(各章题解)第7章 信号的运算和处理.doc
- 《模拟电子线路》课程教学资源(各章题解)第6章 放大电路中的反馈.doc
- 《模拟电子线路》课程教学资源(各章题解)第5章 放大电路的频率响.doc
- 《模拟电子线路》课程教学资源(各章题解)第4章 集成运算放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第3章 多级放大电路.doc
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 9 The CT Fourier Transform Pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 7 The Eigenfunction Property of Complex.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 10 DT Fourier transform pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture11 Convolution Property example.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 12 Linear phase.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 13 SAMPLING.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture15 The Concept of modulation.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture14 Sampling review.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture16 AM with an Arbitrary Periodic carrier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture17 Motivation for the Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture19 CT System Function Properties.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture18 Inverse Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture20 A Typical Feedback System.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 22 The z-transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture21 The Concept of a root locus.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture23 Geometric Evaluation of a Rational z-Transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab3.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab1.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps2.pdf