《信号与系统 Signals and Systems》课程教学资料(英文版)lecture15 The Concept of modulation

Signals and Systems Fall 2003 Lecture #15 28 October 2003 Complex exponential amplitude modulation 2. Sinusoidal am 3. Demodulation of Sinusoidal AM 4. Single-Sideband(SSB)AM 5. Frequency-Division Multiplexing 6. Superheterodyne receivers
Signals and Systems Fall 2003 Lecture #15 28 October 2003 1. Complex Exponential Amplitude Modulation 2. Sinusoidal AM 3. Demodulation of Sinusoidal AM 4. Single-Sideband (SSB) AM 5. Frequency-Division Multiplexing 6. Superheterodyne Receivers

The Concept of modulation Transmitted Signal Carrier Signal Why? More efficient to transmit E&M signals at higher frequencies Transmitting multiple signals through the same medium using different carriers Transmitting through "channels, with limited passbands Others How? Many metho Focus here for the most part on Amplitude Modulation(AM) X(1) y(t=X(tc(t) c()
The Concept of Modulation Why? • More efficient to transmit E&M signals at higher frequencies • Transmitting multiple signals through the same medium using different carriers • Transmitting through “channels” with limited passbands • O t h e r s... • Many methods • Focus here for the most part on A mplitude Modulation (AM ) How? x(t) Transmitted Signal Carrier Signal

Amplitude Modulation(AM)of a Complex exponential carrier c(t) Wc-carrier frequency jEct X(w)*clw) cga) 2丌 X u)* 2d(w-wc) 2TU X((-c) (Oc-OM)Oc(oc+OM)(
Amplitude Modulation (AM) of a Complex Exponential Carrier

Demodulation of Complex Exponential AM x(t) y() x(t) nwct cos wct+] sin wct Corresponds to two separate modulation channels( quadratures) with carriers 90 out of phase cOS (ct lmt
Demodulation of Complex Exponential AM Corresponds to two separate modu l ation channels (quadratures) with carriers 90 o out of phase

Sinusoidal am x(t) cOS O t X(j)米丌{6(u-uc)+6(u+c)} oXOw-wc))+eXo(w+wc) Drawn assuming (uc-oMωl(oc+uM (c)
Sinusoidal AM Drawn assuming ωc > ωM

Synchronous Demodulation of Sinusoidal AM Hojo) 2 y(t) w(t) cos(ot+θ) Lowpass filter Local oscillator Y(o) Suppose 0=0 for now → Local oscillator is in phase with the carrier (c-oM) Wc(ac+OM Co (20c-aM2a
Synchronous Demodulation of Sinusoidal AM Suppose θ = 0 for now, ⇒ Local oscillator is in phase with the carrier

Synchronous demodulation in the Time domain w(t)=y(t)cos wct=a(t) cos wct=o(t)+ o(t)cos 2wct High-frequency signals Then t)= filtered out by the LPF Now suppose there is a phase difference, i.e. 0#0, then w(t)= y(t) cos(wct+0)=(t)cos wct cos(wct+8 a(t)cos 8+o(t)(cos(2wct+0)) OW (t)=a(t)cos g HF signal Two special cases 0=T/2, the local oscillator is 90o out of phase with the carrier or(o=0, signal unrecoverable 2)0=0(0)-slowly varying with time, =r(t=cos[0(o).x(o) → time-varying gain
Synchronous Demodulation in the Time Domain Two special cases: 1) θ = π/2, the local oscillator is 90 o out of phase with the carrier, ⇒ r ( t) = 0, signal unrecoverable. Now suppose there is a phase difference, i.e. θ ≠ 0, then 2) θ = θ ( t) — slowly varying with time, ⇒ r ( t) ≅ cos[ θ ( t)] • x ( t), ⇒ time-varying “gain

Synchronous Demodulation (with phase error) in the Frequency domain Demodulating signal has phase difference 0w.r. the modulating signal COS ( wct+0)=eect +e 3e 3at j6 丌e( )+丌e-06(u+ W(jo) -je 20 M (20OM)20 Again, the low-frequency signal(o<Om)=0 when 0=T/2
Synchronous Demodulation (with phase error) in the Frequency Domain Again, the low-frequency signal ( ω < ω M) = 0 when θ = π/2. Demodulating signal – has phase difference θ w.r.t. the modulating signal

Alternative: Asynchronous Demodulation Assume @c >> OM, so signal envelope looks like x(t) Add same carrier with amplitude a to signal x(t) y(t)=(A+X(t))cosOct elope=A+x(t) cos (,t Y(jo) Envel Time domain Frequency Domain a=0= DSB/SC (Double Side Band, Suppressed Carrier) A>0+DSB/WC Double Side Band, With Carrier)
Alternative: Asynchronous Demodulation • Assume ωc >> ωM, so signal envelope looks like x(t) • Add same carrier with amplitude A to signal A = 0 ⇒ DSB/SC (Double Side Band, Suppressed Carrier) A > 0 ⇒ DSB/WC (Double Side Band, With Carrier) Time Domain Frequency Domain

Asynchronous Demodulation(continued) Envelope Detector r(t) w(t) Y(t) c R W(t) In order for it to function properly, the envelope function must be positive for all time, i.e. A+x(o)>0 for all t Demo: Envelope detection for asynchronous demodulation Advantages of asynchronous demodulation Simpler in design and implementation Disadvantages of asynchronous demodulation Requires extra transmitting power [Acoso t]2 to make sure A+x(t)>0=Maximum power efficiency=1/3(P8.27)
Asynchronous Demodulation (continued) Envelope Detector Disadvantages of asynchronous demodulation: — Requires extra transmitting power [Acos ω c t]2 to make sure A + x ( t) > 0 ⇒ Maximum power efficiency = 1/3 (P8.27) In order for it to function properly, the envelope function must be positive for all time, i.e. A + x ( t) > 0 for all t. Demo: Envelope detection for asynchronous demodulation. Advantages of asynchronous demodulation: — Simpler in design and implementation
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 13 SAMPLING.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 12 Linear phase.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture11 Convolution Property example.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 10 DT Fourier transform pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 7 The Eigenfunction Property of Complex.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 9 The CT Fourier Transform Pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 8 Fouriers derivation of the ct fourier transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 6 CT Fourier Series Pairs.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 4 Representation of ct signals.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture5 Portrait of Jean Baptiste Joseph Fourier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 2 SYSTEM EXAMPLES.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture3 Exploiting Superposition and Time-Invariance.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture1 THE INDEPENDENT VARIABLES.pdf
- 《DSP硬件开发培训》讲义.pdf
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第五章 汇编语言编程举例.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第四章 DSP软件开发过程.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第三章 DSP指令系统与特点.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第二章 DSP芯片结构介绍.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第一章 DSP技术概述 Digital Signal Processor(主讲:陈金鹰).ppt
- 《信号与系统》试卷集锦及参考答案.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture14 Sampling review.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture16 AM with an Arbitrary Periodic carrier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture17 Motivation for the Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture19 CT System Function Properties.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture18 Inverse Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture20 A Typical Feedback System.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 22 The z-transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture21 The Concept of a root locus.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture23 Geometric Evaluation of a Rational z-Transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab3.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab1.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps1.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps1sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps3.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps2sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps4.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps3sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps4sol.pdf