《信号与系统 Signals and Systems》课程教学资料(英文版)lecture19 CT System Function Properties

H AA Signals and systems Fall 2003 Lecture #19 1 8 November 2003 1. CT System Function Properties 2. System Function Algebra and Block diagrams 3. Unilateral Laplace Transform and plications
Signals and Systems Fall 2003 Lecture #19 18 November 2003 1. CT System Function Properties 2. System Function Algebra and Block Diagrams 3. Unilateral Laplace Transform and Applications

CT System Function Properties H(8) H(S)=system function Y(S=H(SX( 1) System is stabl/d-1→b() right-sided T C +1 t→t+T t→t+T e-(+Tu(t+r)+0 at t<0Non-causal
CT System Function Properties 2) Causality ⇒ h ( t) right-sided signal ⇒ ROC of H( s) is a right-half plane Question: If the ROC of H( s) is a right-half plane, is the system causal? |h ( t) | dt < ∞ −∞ ∞ ∫ 1) System is stable ⇔ ⇔ ROC of H( s) includes j ω axis Ex. H(s) = “system function” Non-causal

Properties of ct rational System Functions a) However, if H(s)is rational, then The system is causal The roc of H(s)is to the right of the rightmost pole b) If H(s)is rational and is the system function of a causal system, then The system is stable jo-axis is in ROC A all poles are in lhp
Properties of CT Rational System Functions a) However, if H( s) is rational, then The system is causal ⇔ The ROC of H( s) is to the right of the rightmost pole j ω-axis is in ROC ⇔ all poles are in LHP b) If H( s) is rational and is the system function of a causal system, then The system is stable ⇔

Checking if all Poles are in the left-half plane Poles are the roots of d(s)=sm+an-1Sn- +..+a1s+a0 Method#1: Calculate all the roots and see Method #2: Routh-Hurwitz- Without having to solve for roots Polynomial Condition so that all roots are in the lhp First -order S+ ao a0>0 econd-order s2+ars+ao a1>0,a0>0 Third-order a18+a0a2>0,a1>0,a0>0 and ao alas
Checking if All Poles Are In the Left-Half Plane Method #1: Calculate all the roots and see! Method #2: Routh-Hurwitz – Without having to solve for roots

Initial-and final-Value Theorems If x(t)=0 for to, then Im SA(S Final value S→
Initial- and Final-Value Theorems If x(t) = 0 for t < 0 and there are no impulses or higher order discontinuities at the origin, then Initial value If x(t) = 0 for t < 0 and x(t) has a finite limit as t → ∞, then Final value

Applications of the lnitial-and Final-Value Theorem F X D(s) n-order of polynomial N(s), d-order of polynomial D(s) d>m+1 C X Im SAS )= finite≠0d=m+1 d<m+1 E. g. X(s) S+1 Final value Ifx(∞x)= lim sX(s)=0→lmX(s)< → No poles at s=0
Applications of the Initial- and Final-Value Theorem • Initial value: • Fin a l v a l u e For

LTI Systems Described by lccdes ∑am0D=∑k dt Repeated use of differentiation property. dk R k dt M ∑aksY(s)=∑bksX Y(S)=H(SX(s roots of numerator zero where roots of denominator= poles h-o ak s Rational ROC= Depends on: 1) 1)Locations of all poles 2) Boundary conditions, i.e right-, left-, two-sided signals
LTI Systems Described by LCCDEs ROC =? Depends on: 1) Locations of all poles. 2) Boundary conditions, i.e. right-, left-, two-sided signals. roots of numerator ⇒ zeros roots of denominator ⇒ poles

System Function Algebra Example: a basic feedback system consisting of causal blocks (t)->(+e(t)h,( H y(t) 1(S z()h2(t) H2(S) E(s=Xs-Z(s=X(s-H2(sr(s) Y(S)=HIsE(s)=H1(sX(s-H2(s)Y(s) H(s=Y(s) H1( More on this later X(s)1+H1(s)H2( feedback ROC: Determined by the roots of 1+H(H2(s), instead of H,(s)
System Function Algebra Example: A basic feedback system consisting of causal blocks ROC: Determined by the roots of 1+H1( s ) H2 ( s), instead of H1( s ) More on this later in feedback

Block Diagram for Causal LtI Systems with rational system Functions Example: Y(S=H(SX(S) 2s2+4s-6 82+3s+2 2+3s+2 (28+48-6)-Can be viewed as cascade of two systems +3s+2 -0 du dt2 +s dt+ 2w(t)=c(t), initially at rest Or dt r()-3 dt 2(t) Similarly (s)=(2s2+4s-6)W(s) dw(t) dw( +4 6u(t) dt
Block Diagram for Causal LTI Systems with Rational System Functions — Can be viewed as cascade of two systems. Example:

Example(continued H(S Instead of 2s2+4s-6 3s+2 We can construct H(s)using do(t) 200 dt dt dw(t),do(t) y(t) w(t) w(t) 3 Notation: 1/s-an integrator
Example (continued) Instead of 1 s 2 + 3s + 2 2s2 + 4s − 6 H(s) Notation: 1/s — an integrator We can construct H(s) using: x(t) y(t)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture17 Motivation for the Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture16 AM with an Arbitrary Periodic carrier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture14 Sampling review.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture15 The Concept of modulation.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 13 SAMPLING.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 12 Linear phase.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture11 Convolution Property example.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 10 DT Fourier transform pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 7 The Eigenfunction Property of Complex.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 9 The CT Fourier Transform Pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 8 Fouriers derivation of the ct fourier transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 6 CT Fourier Series Pairs.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 4 Representation of ct signals.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture5 Portrait of Jean Baptiste Joseph Fourier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 2 SYSTEM EXAMPLES.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture3 Exploiting Superposition and Time-Invariance.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture1 THE INDEPENDENT VARIABLES.pdf
- 《DSP硬件开发培训》讲义.pdf
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第五章 汇编语言编程举例.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第四章 DSP软件开发过程.ppt
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture18 Inverse Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture20 A Typical Feedback System.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 22 The z-transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture21 The Concept of a root locus.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture23 Geometric Evaluation of a Rational z-Transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab3.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab1.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps1.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps1sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps3.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps2sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps4.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps3sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps4sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps5.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps5sol.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps6.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps7.pdf