《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 9 The CT Fourier Transform Pair

Signals and Systems Fall 2003 Lecture #9 2 October 2003 The Convolution Property of the ctFt 2. Frequency Response and Lti Systems Revisited 3. Multiplication property and Parseval's relation The dt fourier transform
Signals and Systems Fall 2003 Lecture #9 2 October 2003 1. The Convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval’s Relation 4. The DT Fourier Transform

The ct fourier transform Pair X lw) X u) (t)e Ju dt FT (Analysis Equation () X Gjw)e dw-Inverse Ft (Synthesis Equation Last lecture: some properties Today urther exploration
The CT Fourier Transform Pair Last lecture: some properties Today: further exploration (Synthesis Equation) (Analysis Equation)

Convolution property (t)=h(t)*(t)←→Y(ju)=H(j)X(j where h()→H(j) a consequence of the eigenfunction property Xiju dw coefficient a h(t) H(jw)aejwt H(u)- X(ju)dw H(w) 2 H(jw)X(w)eo da Synthesis equation Yu) y
Convolution Property A consequence of the eigenfunction property: Synthesis equation for y(t)

The frequency response revisited impulse response () y(t)=h(t)米x() Y(w)=hgw)X(w) frequency response The frequency response of a Ct Lti system is simply the Fourier transform of its impulse response Example#1: c(t) Recall 2丌6( Y(ju)=H(ju)X(j)=H(j)2m6(u-Wo)=2xH(jdo)6(u-o) v inverse FT y(t)=lwo)
The Frequency Response Revisited The frequency response of a CT LTI system is simply the Fourier transform of its impulse response Example #1: impulse response frequency response

Example #2: a differentiator da(t dt an ltI system Differentiation property: Y()=jw x(jw H 1)Amplifies high frequencies(enhances sharp edges) Larger at high 2)+丌/2 phase shift(j=c phase shift wo cos wot wo sin(wot+ dt cOS wl -wo sin wot wo cos(wot+
Example #2: A differentiator 1) Amplifies high frequencies (enhances sharp edges) Larger at high ωo phase shift Differentiation property:

Example #3: Impulse response of an Ideal Lowpass Filter HgO SIn w Questions Sinc Is this a causal system? No Define:sinc)ssin丌 2)What is h(0)? 6 h(0) Hlu du 2 3)What is the steady-state value of the step response, i.e. S(oo)? (t) h(t) h(t)dt=H(0)=1
Example #3: Impulse Response of an Ideal Lowpass Filter 2) What is h(0)? No. Questions: 1) Is this a causal system? 3) What is the steady-state value of the step response, i.e. s(∞)?

Example#4: Cascading filtering operations H1(j0) Hojo) HgO)=H,GO) H,gjo egH1(j0)=H2(j0) H(j0) Hgo= HGjo) has a sharper frequency
Example #4: Cascading filtering operations H(jω)

Example #5: sin 4t sin &t Y(w)=X(w 丌t (t) h(t) XGo) HojO) Ygo) 4π Example #6: T 米已 a+ 已 Gaussian x Gaussian=Gaussian= Gaussian s Gaussian= gaussian
Example #5: Gaussian × Gaussian = Gaussian ⇒ Gaussian ∗ Gaussian = Gaussian Example #6:

Example #2 from last lecture 1/a X(w) (t)e Ju dt a dt 0+/e-w… t 3 X(jo)=1/(a2+o) ∠Ⅹ(j0)=tan(oa) π/2 1/a 兀/4 1/ay2 a a a a /2
Example #2 from last lectu r e

Example #7: °·。 米 Y(j)=H(u)X(j)三 (1+j):(2+j a rational function of jw, ratio of polynomials of jw V Partial fraction expansion Y 1+w 2+ju v inverse FT
Example #7:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 8 Fouriers derivation of the ct fourier transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 6 CT Fourier Series Pairs.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 4 Representation of ct signals.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture5 Portrait of Jean Baptiste Joseph Fourier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 2 SYSTEM EXAMPLES.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture3 Exploiting Superposition and Time-Invariance.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture1 THE INDEPENDENT VARIABLES.pdf
- 《DSP硬件开发培训》讲义.pdf
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第五章 汇编语言编程举例.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第四章 DSP软件开发过程.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第三章 DSP指令系统与特点.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第二章 DSP芯片结构介绍.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第一章 DSP技术概述 Digital Signal Processor(主讲:陈金鹰).ppt
- 《信号与系统》试卷集锦及参考答案.pdf
- 《模拟电子线路》课程教学资源(各章题解)第9章 功率放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第8章 波形的发生和信号的转换.doc
- 《模拟电子线路》课程教学资源(各章题解)第7章 信号的运算和处理.doc
- 《模拟电子线路》课程教学资源(各章题解)第6章 放大电路中的反馈.doc
- 《模拟电子线路》课程教学资源(各章题解)第5章 放大电路的频率响.doc
- 《模拟电子线路》课程教学资源(各章题解)第4章 集成运算放大电路.doc
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 7 The Eigenfunction Property of Complex.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 10 DT Fourier transform pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture11 Convolution Property example.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 12 Linear phase.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 13 SAMPLING.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture15 The Concept of modulation.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture14 Sampling review.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture16 AM with an Arbitrary Periodic carrier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture17 Motivation for the Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture19 CT System Function Properties.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture18 Inverse Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture20 A Typical Feedback System.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 22 The z-transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture21 The Concept of a root locus.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture23 Geometric Evaluation of a Rational z-Transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab3.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab1.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps2.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)ps1.pdf