中国高校课件下载中心 》 教学资源 》 大学文库

《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 4 Representation of ct signals

文档信息
资源类别:文库
文档格式:PDF
文档页数:20
文件大小:341.48KB
团购合买:点击进入团购
内容简介
Representation of ct signals Approximate any input x(t) as a sum of shifted, scaled
刷新页面文档预览

Signals and Systems Fall 2003 Lecture #4 16 September 2003 Representation of CT Signals in terms of shifted unit impulses 2. Convolution integral representation of CT Lti systems 3. Properties and examples 4. The unit impulse as an idealized pulse that is short enough": The operational definition of d(t

Signals and Systems Fall 2003 Lecture #4 16 September 2003 1. Representation of CT Signals in terms of shifted unit impulses 2. Convolution integral representation of CT LTI systems 3. Properties and Examples 4. The unit impulse as an idealized pulse that is “short enough”: The operational definition of δ(t)

Representation of CT Signals Approximate any input x(t) as a sum of shifted, scaled pulses X( 0△ ()=x(k△),k△<t<(k+1)△

Representation of CT Signals • Approximate any input x ( t) as a sum of shifted, scaled pulses

6△(t) (t) has unit area x(k△) (k△)06△(t-k△)△ k△个 (k+1)△ ()=∑(k△A△(t-kA)△ k=- l limit as△→0 x(T)6(t-T) The Sifting Property of the Unit Impulse

has unit area The Sifting Property of the Unit Impulse

Response of a ctlti system CT LTI 6△(t)一h△(t) (1)=∑m(k△△(t-kA△ ∑m(k△△(-k△△ k k Impulse response 6(t)—h(t) Taking limits△0 x(7)6(t-r)dr-)y(t) (rh(t-r)d Convolution Integra

Response of a CT LTI System LTI ⇒

Operation of cT Convolution g(t)=.(t)* h(t Fli Slide →h(t-T) Multiply (Th(t-T) Integrate x(T)h(t-7) Example: CT convolution x(1) h1) Xt h(t-τ) ,t+1 t+2

Example: CT convolution Operation of CT Convolution

Time Interval x(t)·h(t-0) Output t2 yt)=0

-1 -1 0 0 1 1 2 2

PROPERTIES AND EXAMPLES 1)Commutativity (t)*hb(t)=b()*(t) 2) (t)*8(t-to)=c(t-to) Sifting property: a(t)8(t=at 3)An integrator y(t)=/(r)dr So if input i t)=6(+) It g(t)=h(t) h(t)=/6(7)dr=u( That is ()=x(t)米h()=|m(t)*(t) ITdT 4)Step response s(t)=0(t)米h()=h()*(t)

PROPERTIES AND EXAMPLES 1) Commutativity: 2) 4) Step response: 3) An integrator:

DISTRIBUTIVITY h1(t)+h2( y(D)=x()*[h1()+h2(1) y()=x(t)*h/(t)+x(1)*h2(t)

DISTRIBUTIVITY

ASSOCIATIVITY h1(t) h2(2) y()=[x(t)*h1(D)*h4() h1()*h2(t) y()=x(2)*[h1()*h2() Commutativity h2(t)*h1(t) y()=x()*[h2(D)*h1( x() h2(t) h1(t) y()=[x()*h2()*h(

ASSOCIATIVITY

Causality: CT LTI system is causal h(t)=0,t<o Stability: T LTI system is stable台∫sb(r)dr<∞

共20页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档