《信号与系统 Signals and Systems》课程教学资料(英文版)lecture5 Portrait of Jean Baptiste Joseph Fourier

Signals and Systems Fall 2003 Lecture#5 1 8 September 2003 Complex Exponentials as Eigenfunctions of LTI Systems 234 Fourier Series representation of CT periodic signals How do we calculate the fourier coefficients Convergence and gibbs phenomenon
Signals and Systems Fall 2003 Lecture #5 18 September 2003 1. Complex Exponentials as Eigenfunctions of LTI Systems 2. Fourier Series representation of CT periodic signals 3. How do we calculate the Fourier coefficient s ? 4. Convergence and Gibbs’ Phenomenon

Portrait of Jean Baptiste Joseph Fourier Image removed due to copyright considerations Signals Systems, 2nd ed. Upper Saddle River, N.J. Prentice Hall, 1997, p. 179
Signals & Systems, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1997, p. 179. Portrait of Jean Baptiste Joseph Fourier Image removed due to copyright considerations

Desirable characteristics of a set of "basic" signals a. We can represent large and useful classes of signals using these building blocks b. The response of lti systems to these basic signals is particularly simple, useful, and insightful Previous focus: Unit samples and impulses Focus now: Eigenfunctions of all lti systems
Desirable Characteristics of a Set of “Basic” Signals a. We can represent large and useful classes of signals using these building blocks b. The response of LTI systems to these basic signals is particularly simple, useful, and insightful Previous focus: Unit samples and impulses Focus now: Eigenfunctions of all LTI systems

The eigenfunctions ok(t) and their properties (Focus on CT systems now, but results apply to dt systems as well. System envalue Eigenfunction in→> same function out with a‘gain” From the superposition property of lti systems (t)=∑kakk( kak ok Now the task of finding response of lti systems is to determine nk
The eigenfunctions φk(t) and their properties (Focus on CT systems now, but results apply to DT systems as well.) eigenvalue eigenfunction Eigenfunction in → same function out with a “gain” From the superposition property of LTI systems: Now the task of finding response of LTI systems is to determine λk

Complex exponentials as the eigenfunctions of any LTI Systems a(t)=es h() T h(r) std H(s eigenvalue eigenfunction hn ∑ m=-0 ∑Mml2-n|2n H(z) eigenvalue eigenfunction
Complex Exponentials as the Eigenfunctions of any LTI Systems eigenvalue eigenfunction eigenvalue eigenfunction

H(8) 1)=∑(s k H DT 2k)2 H()=∑bzn l=∑0k2→=∑H(x)a
DT:

What kinds of signals can we represent as “sums” of complex exponentials For Now: Focus on restricted sets of complex exponentials CT ow- purely imaginary i. e, signals of the form eJwt Magnitude 1 DT i. e. signals of the form ejan ct dt fourier series and Transforms Periodic signals
What kinds of signals can we represent as “sums” of complex exponentials? For Now: Focus on restricted sets of complex exponentials CT & DT Fourier Series and Transforms CT: DT: ⇓ Magnitude 1 Periodic Signals

Fourier series representation of ct Periodic signals a(t=at+r) for all t smallest such T'is the fundamental period 2丌 is the fundamental frequency periodic with period T+w= hwo ()=∑ak=∑ akeJk2mt/T k periodic with period T fak are the Fourier (series) coefficients k=0 DC -k=±1 first harmonic k=±2 second harmonic
Fourier Series Representatio n of CT Periodic Signals ωo = 2 π T - s m a l l e s t s u c h T is the fundamental period - i s t h e fundamental frequency - periodic with period T - { a k} are the Fourier (series) coefficients - k = 0 D C - k = ±1 first harmonic - k = ±2 second harmonic

Question #1: How do we find the Fourier coefficients First, for simple periodic signals consisting of a few sinusoidal terms Ex: a(t cOS4mt+2sin8丌t Euler's relation e art e art (memorize!) 2丌2丌1 4丌T 4 0 0-no dc component a 21000
Question #1: How do we find the Fourier coefficients? First, for simple periodic signals consisting of a few sinusoidal terms 0 – no dc component 0 0 Euler's relation (memorize!)

For real periodic signals, there are two other commonly used forms for ct Fourier series a(t)=a0+>lak cos hot+Bk sin kwot) k=1 (t) ∑7kcs(kot+) Because of the eigenfunction property of ejor, we will usually use the complex exponential form in 6.003 a consequence of this is that we need to include terms for both positive and negative frequencies kwo t kwo t e Remember cos(swot) +e and sin(swot)
• For real periodic signals, there are two other commonly used forms for CT Fourier series: • Because of the eigenfunction property of ejωt, we will usually use the complex exponential form in 6.003. - A consequence of this is that we need to include terms for both positive and negative frequencies:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 2 SYSTEM EXAMPLES.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture3 Exploiting Superposition and Time-Invariance.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture1 THE INDEPENDENT VARIABLES.pdf
- 《DSP硬件开发培训》讲义.pdf
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第五章 汇编语言编程举例.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第四章 DSP软件开发过程.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第三章 DSP指令系统与特点.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第二章 DSP芯片结构介绍.ppt
- 成都理工大学:《DSP技术及应用》课程电子教案(PPT教学课件)第一章 DSP技术概述 Digital Signal Processor(主讲:陈金鹰).ppt
- 《信号与系统》试卷集锦及参考答案.pdf
- 《模拟电子线路》课程教学资源(各章题解)第9章 功率放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第8章 波形的发生和信号的转换.doc
- 《模拟电子线路》课程教学资源(各章题解)第7章 信号的运算和处理.doc
- 《模拟电子线路》课程教学资源(各章题解)第6章 放大电路中的反馈.doc
- 《模拟电子线路》课程教学资源(各章题解)第5章 放大电路的频率响.doc
- 《模拟电子线路》课程教学资源(各章题解)第4章 集成运算放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第3章 多级放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第2章 基本放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第2章 基本放大电路.doc
- 《模拟电子线路》课程教学资源(各章题解)第1章 常用半导体器件.doc
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 4 Representation of ct signals.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 6 CT Fourier Series Pairs.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 8 Fouriers derivation of the ct fourier transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 9 The CT Fourier Transform Pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 7 The Eigenfunction Property of Complex.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 10 DT Fourier transform pair.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture11 Convolution Property example.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 12 Linear phase.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 13 SAMPLING.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture15 The Concept of modulation.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture14 Sampling review.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture16 AM with an Arbitrary Periodic carrier.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture17 Motivation for the Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture19 CT System Function Properties.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture18 Inverse Laplace transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture20 A Typical Feedback System.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture 22 The z-transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture21 The Concept of a root locus.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lecture23 Geometric Evaluation of a Rational z-Transform.pdf
- 《信号与系统 Signals and Systems》课程教学资料(英文版)lab3.pdf