安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(实验设计)多表代换Virginia加密算法及秘钥破解算法的实现

编程任务要求 编程语言为C语言或其它语言,要求提交加密、 解密、破解源代码文件。 实现对任意有意义的英文文本文件(*.txt)的 Virginia加密、解密算法,其中秘钥是任意输 入的一个字符串。要求提供明文文本文件、密 文文本文件。 在不知道秘钥的情况下,对一个用Virginia加 密算法生成的密文文本文件进行破解,包括破 解秘钥、生成对应的明文。要求提供程序测试 说明文档
编程任务要求 • 编程语言为C语言或其它语言,要求提交加密、 解密、破解源代码文件。 • 实现对任意有意义的英文文本文件(*.txt)的 Virginia加密、解密算法,其中秘钥是任意输 入的一个字符串。要求提供明文文本文件、密 文文本文件。 • 在不知道秘钥的情况下,对一个用Virginia加 密算法生成的密文文本文件进行破解,包括破 解秘钥、生成对应的明文。要求提供程序测试 说明文档

Virginia加密算法、解密算法
Virginia加密算法、解密算法

Virginia加密算法 ·假设语言的字符集为 Charset[26]=a','b',...'z' 字符集大小=26 ·对应的字符编码为 C0ding[26]={0,1,,25}
Virginia加密算法 • 假设语言的字符集为 Charset[26]={‘a’, ’b’, …, ’z’} 字符集大小=26 • 对应的字符编码为 Coding[26]={0, 1, …, 25}

Virginia加密算法 ·Virginia加密算法是对明文进行加密的 过程中依照密钥的指示轮流使用多个 单表代替密码。 ·设明文串为: M=mm2.mn,m,∈charset,,n是明文长度 ·秘钥为: K=kk2.ka,k,∈charset,.d是秘钥长度 ·密文为: C=CC2.Cn,C,∈charset,n是密文长度
Virginia加密算法 • Virginia加密算法是对明文进行加密的 过程中依照密钥的指示轮流使用多个 单表代替密码。 • 设明文串为: M=m1m2…mn,mi∈charset, n是明文长度 • 秘钥为: K=k1 k2…kd,ki∈charset, d是秘钥长度 • 密文为: C=c1 c2…cn,ci∈charset, n是密文长度

Virginia加密算法 ·加密算法: Cjtu(mitid+ki mod 26 j=1...d,t-0...ceiling(n/d)-1 其中ceiling(x)函数表示不小于x最小整数 解密算法: mjtud-(cita-ki)mod 26 j=1...d,t=0...ceiling(n/d)-1 其中ceiling()函数表示不小于x最小整数
Virginia加密算法 • 加密算法: cj+td=(mj+td+kj ) mod 26 j=1…d, t=0…ceiling(n/d)-1 其中ceiling(x)函数表示不小于x最小整数 • 解密算法: mj+td=(cj+td -kj ) mod 26 j=1…d, t=0…ceiling(n/d)-1 其中ceiling(x)函数表示不小于x最小整数

Virginia加密算法举例 ml m2 m3 m4 m5 m6 m7 m8 m9 ml0 mll 明文M n 0 t h n g i S 0 (编码) (13) (14) (19) (7) (8) (13) (8) (18) (19) (14) 秘钥K j y 0 y y 0 (编码) (9) (14) (24) (9) (14) (24) (9 (14) (24) (9 (14) 密文C r W p W c (编码) (22) (2) (17) (16) (22) (11) (15) (22) (16) (2) (2) j=1j=2j=3 j=1j=2j=3 j=1j=2j=3 j护1 j=2 t=0t=0 =0t=1t=1t=1t=2t=2t=2 t=3 t=3 明文长度n=11,秘钥长度d=3, ceiling(11/3)-1=3
Virginia加密算法举例 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 明文M (编码) n (13) o (14) t (19) h (7) i (8) n (13) g (6) i (8) s (18) t (19) o (14) 秘钥K (编码) j (9) o (14) y (24) j (9) o (14) y (24) j (9) o (14) y (24) j (9) o (14) 密文C (编码) w (22) c (2) r (17) q (16) w (22) l (11) p (15) w (22) q (16) c (2) c (2) j=1 t=0 j=2 t=0 j=3 t=0 j=1 t=1 j=2 t=1 j=3 t=1 j=1 t=2 j=2 t=2 j=3 t=2 j=1 t=3 j=2 t=3 明文长度n=11,秘钥长度d=3, t=ceiling(11/3)-1=3

一个原始的明文文本 Differential Privacy is the state-of-the-art goal for the problem of privacy-preserving data release and privacy-preserving data mining.Existing techniques using differential privacy,however, cannot effectively handle the publication of high-dimensional data.In particular,when the input dataset contains a large number of attributes,existing methods incur higher computing complexity and lower information to noise ratio,which renders the published data next to useless. This proposal aims to reduce computing complexity and signal to noise ratio.The starting point is to approximate the full distribution of high-dimensional dataset with a set of low-dimensional marginal distributions via optimizing score function and reducing sensitivity,in which generation of noisy conditional distributions with differential privacy is computed in a set of low-dimensional subspaces,and then,the sample tuples from the noisy approximation distribution are used to generate and release the synthetic dataset.Some crucial science problems would be investigated below:(i)constructing a low k-degree Bayesian network over the high-dimensional dataset via exponential mechanism in differential privacy,where the score function is optimized to reduce the sensitivity using mutual information,equivalence classes in maximum joint distribution and dynamic programming;(ii)studying the algorithm to compute a set of noisy conditional distributions from joint distributions in the subspace of Bayesian network,via the Laplace mechanism of differential privacy.(iii)exploring how to generate synthetic data from the differentially private Bayesian network and conditional distributions,without explicitly materializing the noisy global distribution.The proposed solution may have theoretical and technical significance for synthetic data generation with differential privacy on business prospects
一个原始的明文文本 Differential Privacy is the state-of-the-art goal for the problem of privacy-preserving data release and privacy-preserving data mining. Existing techniques using differential privacy, however, cannot effectively handle the publication of high-dimensional data. In particular, when the input dataset contains a large number of attributes, existing methods incur higher computing complexity and lower information to noise ratio, which renders the published data next to useless. This proposal aims to reduce computing complexity and signal to noise ratio. The starting point is to approximate the full distribution of high-dimensional dataset with a set of low-dimensional marginal distributions via optimizing score function and reducing sensitivity, in which generation of noisy conditional distributions with differential privacy is computed in a set of low-dimensional subspaces, and then, the sample tuples from the noisy approximation distribution are used to generate and release the synthetic dataset. Some crucial science problems would be investigated below: (i) constructing a low k-degree Bayesian network over the high-dimensional dataset via exponential mechanism in differential privacy, where the score function is optimized to reduce the sensitivity using mutual information, equivalence classes in maximum joint distribution and dynamic programming; (ii)studying the algorithm to compute a set of noisy conditional distributions from joint distributions in the subspace of Bayesian network, via the Laplace mechanism of differential privacy. (iii)exploring how to generate synthetic data from the differentially private Bayesian network and conditional distributions, without explicitly materializing the noisy global distribution. The proposed solution may have theoretical and technical significance for synthetic data generation with differential privacy on business prospects

经过预处理之后的明文文本 (只保留字符集中的字符) differentialprivacyisthestateoftheartgoalfortheproblemofprivacypreservingdatarelease andprivacypreservingdataminingexistingtechniquesusingdifferentialprivacyhoweverca nnoteffectivelyhandlethepublicationofhighdimensionaldatainparticularwhentheinputd atasetcontainsalargenumberofattributesexistingmethodsincurhighercomputingcomple xityandlowerinformationtonoiseratiowhichrendersthepublisheddatanexttouselessthisp roposalaimstoreducecomputingcomplexityandsignaltonoiseratiothestartingpointistoap proximatethefulldistributionofhighdimensionaldatasetwithasetoflowdimensionalmargi naldistributionsviaoptimizingscorefunctionandreducingsensitivityinwhichgenerationof noisyconditionaldistributionswithdifferentialprivacyiscomputedinasetoflowdimensiona Isubspacesandthenthesampletuplesfromthenoisyapproximationdistributionareusedto generateandreleasethesyntheticdatasetsomecrucialscienceproblemswouldbeinvestiga tedbelowiconstructingalowkdegreebayesiannetworkoverthehighdimensionaldatasetvi aexponentialmechanismindifferentialprivacywherethescorefunctionisoptimizedtoredu cethesensitivityusingmutualinformationequivalenceclassesinmaximumjointdistributio nanddynamicprogrammingiistudyingthealgorithmtocomputeasetofnoisyconditionaldis tributionsfromjointdistributionsinthesubspaceofbayesiannetworkviathelaplacemechan ismofdifferentialprivacyiiiexploringhowtogeneratesyntheticdatafromthedifferentiallypr ivatebayesiannetworkandconditionaldistributionswithoutexplicitlymaterializingthenois yglobaldistributiontheproposedsolutionmayhavetheoreticalandtechnicalsignificancefo rsyntheticdatagenerationwithdifferentialprivacyonbusinessprospects
经过预处理之后的明文文本 (只保留字符集中的字符) differentialprivacyisthestateoftheartgoalfortheproblemofprivacypreservingdatarelease andprivacypreservingdataminingexistingtechniquesusingdifferentialprivacyhoweverca nnoteffectivelyhandlethepublicationofhighdimensionaldatainparticularwhentheinputd atasetcontainsalargenumberofattributesexistingmethodsincurhighercomputingcomple xityandlowerinformationtonoiseratiowhichrendersthepublisheddatanexttouselessthisp roposalaimstoreducecomputingcomplexityandsignaltonoiseratiothestartingpointistoap proximatethefulldistributionofhighdimensionaldatasetwithasetoflowdimensionalmargi naldistributionsviaoptimizingscorefunctionandreducingsensitivityinwhichgenerationof noisyconditionaldistributionswithdifferentialprivacyiscomputedinasetoflowdimensiona lsubspacesandthenthesampletuplesfromthenoisyapproximationdistributionareusedto generateandreleasethesyntheticdatasetsomecrucialscienceproblemswouldbeinvestiga tedbelowiconstructingalowkdegreebayesiannetworkoverthehighdimensionaldatasetvi aexponentialmechanismindifferentialprivacywherethescorefunctionisoptimizedtoredu cethesensitivityusingmutualinformationequivalenceclassesinmaximumjointdistributio nanddynamicprogrammingiistudyingthealgorithmtocomputeasetofnoisyconditionaldis tributionsfromjointdistributionsinthesubspaceofbayesiannetworkviathelaplacemechan ismofdifferentialprivacyiiiexploringhowtogeneratesyntheticdatafromthedifferentiallypr ivatebayesiannetworkandconditionaldistributionswithoutexplicitlymaterializingthenois yglobaldistributiontheproposedsolutionmayhavetheoreticalandtechnicalsignificancefo rsyntheticdatagenerationwithdifferentialprivacyonbusinessprospects

经过virginia加密后的密文 加密秘钥key=infosec lvktwvgvgnodttqifqqmubujglevmbkhziczglcsphweyvwttwoqseshxenjsgaxejgwvxqalrsxczrqsswgiaid jmxipddjiumeawfkfigfaarkvtjlawvqalhwgjvwiwwwavsuvmhnrwsfxkiyufazckImcoixmehofrqbrktwg vqijzqlcvqqsllgxhgzagcbvtbgjjqtmraqgvfncfenInyoarriey wuyniebvwrvprnbhyvInyokivkbshsmpanqo jkgvhrpwvqnnyhjmdcgjgwbkagnbyqgbutrkmpkhwvakjmehcetwbvsuusoxyjlaxaiaizgagzvstgvoigncf xqvbngwvcbvtkzmepejbvitagmshydtvxvwhfigfbwbvbbzgwpgafyvawrzbuckenivrglstmqzqwgquczha rikbrddizqgdofhuqtsodxqvbngwvcbvthziubnwharixbnblmubbfdhvqfvrolivprkidpfqfyfafwbvtbgjjqt mraqgvfncfenInyokivevyvswgbbkzgafqzjbkmqvnqasviqafzvmubenpmxkwaxjaeqxgnaadkvtxqgvgnh sqlmqvnsrjifcpnbywgvfnhazkbInbolkkulsfitigncfshvbngqgqvqnhaspiyiwkxtqozhaspajnhzhknsjfwrv qnqdjmxipdwkgquczhwhkvnxslshtbbraqgvfncfenahggheemffbvxjmayvwwcucqslyrtrxtjsobujbgmu gnudjszqzfhasplvxhjmdcgncfetmhxsvxqorssjevmnsrjinmnxsllgalshzivqpioleumgxceiezhhwspukvjbu irzbgzwquebzzvfgqaaskxkonysvfgtbbwuspagwiuxkvtfzgamIrlfwidiljgaepvrykgvmwijfllgpvlwvmomax wgrctqfhswgbinowbrwajblmctzjqzepqfrwfhknsjfwrvqnqdjmxipdkzitmgmskgqzrkifgvqbswksrbvrwr ifbbwsvyemgmskipavywnmvghxwfkocgzodmpnbwasxkwajemmxiyjbuietnxgwwkvzflaqwuwtwfxfqf yfafwbvtbsrfllsoemexetujeouvsuamubhimaribujodkqzvyvexqkbrdmxgifjhgjpwvxmusplvywgrctqng lvkjhywgrunetabskvgiwkxtqozhaspavshziucoxdsggwsgoqiuqnsbwxywepjaevprqohpckrrsulcvvxagjf qsksjipbvfzhvkdnhmamkmkuzgvkvtmcoxqorssjevmfdbllgbvhrsxcnetallglvktwvgvgnodpaxenjsxgjnd skmcvajhostsnsrusplvywgrctqnglvkjhywgruevyvgyvmkuzagkbydasxgzvfzadkvtyvwrqqfdudsdiyiwkx tqozhaspbujdjsrwfjrksncgncfqcgufjwxjmbwslmeiyfbvxgkuswuenavlbajkknsqwjqzfdbllgbvhrsxcorss jevqbskaxjlvktwvgvgnodttqifqqspjhxwfiuacwcktgkgxvzlj
经过virginia加密后的密文 加密秘钥key=infosec lvktwvgvgnodttqifqqmubujglevmbkhziczglcsphweyvwttwoqseshxenjsgaxejgwvxqalrsxczrqsswgiaid jmxipddjiumeawfkfigfaarkvtjlawvqalhwgjvvviwwwavsuvmhnrwsfxkiyufazcklmcoixmehofrqbrktwg vqijzqlcvqqsllgxhgzagcbvtbgjjqtmraqgvfncfenlnyoarrieywuyniebvwrvprnbhyvlnyokivkbshsmpanqo jkgvhrpwvqnnyhjmdcgjgwbkagnbyqgbutrkmpkhwvakjmehcetwbvsuusoxyjlaxaiaizgagzvstgvoigncf xqvbngwvcbvtkzmepejbvitagmshydtvxvwhfigfbwbvbbzgwpgafyvawrzbuckenivrglstmqzqwgquczha rikbrddizqgdofhuqtsodxqvbngwvcbvthziubnwharixbnblmubbfdhvqfvrolivprkidpfqfyfafwbvtbgjjqt mraqgvfncfenlnyokivevyvswgbbkzgafqzjbkmqvnqasviqafzvmubenpmxkwaxjaeqxgnaadkvtxqgvgnh sqlmqvnsrjifcpnbywgvfnhazkblnbolkkulsfitigncfshvbngqgqvqnhaspiyiwkxtqozhaspajnhzhknsjfwrv qnqdjmxipdwkgquczhwhkvnxslshtbbraqgvfncfenahggheemffbvxjmayvwwcucqslyrtrxtjsobujbgmu gnudjszqzfhasplvxhjmdcgncfetmhxsvxqorssjevmnsrjinmnxsllgalshzivqpioleumgxceiezhhwspukvjbu irzbgzwquebzzvfgqaaskxkonysvfgtbbwuspagwiuxkvtfzgamlrlfwidiljgaepvrykgvmwijfllgpvlvvmomax wgrctqfhswgbinowbrwajblmctzjqzepqfrwfhknsjfwrvqnqdjmxipdkzitmgmskgqzrkifgvqbswksrbvrwr ifbbwsvyemgmskipavywnmvghxwfkocgzodmpnbwasxkwajemmxiyjbuietnxgwwkvzflaqwuwtwfxfqf yfafwbvtbsrfllsoemexetujeouvsuamubhimaribujodkqzvyvexqkbrdmxgifjhgjpwvxmusplvywgrctqng lvkjhywgrunetabskvgiwkxtqozhaspavshziucoxdsggwsgoqiuqnsbwxywepjaevprqohpckrrsulcvvxagjf qsksjipbvfzhvkdnhmamkmkuzgvkvtmcoxqorssjevmfdbllgbvhrsxcnetallglvktwvgvgnodpaxenjsxgjnd skmcvajhostsnsrusplvywgrctqnglvkjhywgruevyvgyvmkuzagkbydasxgzvfzadkvtyvwrqqfdudsdiyiwkx tqozhaspbujdjsrwfjrksncgncfqcgufjwxjmbwslmeiyfbvxgkuswuenavlbajkknsqwjqzfdbllgbvhrsxcorss jevqbskaxjlvktwvgvgnodttqifqqspjhxwfiuacwcktgkgxvzlj

Virginia加密秘钥的破解 一一唯密文攻击
Virginia加密秘钥的破解 ——唯密文攻击
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(教学大纲).pdf
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(授课教案设计,主讲:方贤进).pdf
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(PPT课件讲稿)数据安全与隐私保护——差分隐私保护(主讲:方贤进).pptx
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(课件讲稿)Part 2 Cryptography and its Applications 2-5 Digital Signature and Certificate.pdf
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(课件讲稿)Part 2 Cryptography and its Applications 2-4 Public key Cryptosystem(RSA、ECC).pdf
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(课件讲稿)Part 2 Cryptography and its Applications 2-3 Hash and Message Authentication Code.pdf
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(课件讲稿)Part 2 Cryptography and its Applications 2-2 DES、AES cryptography(Block Cipher).pdf
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(课件讲稿)Part 2 Cryptography and its Applications 2-1 Summary of Classical Cryptography.pdf
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(PPT课件讲稿)Part 1 Introduction to Network & Information Security Section 1-3 the objectives of network and info security.pptx
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(PPT课件讲稿)Part 1 Introduction to Network & Information Security Section 1-2 Preliminary Knowledge.pptx
- 安徽理工大学:《网络与信息安全 Network and Information Security》课程教学资源(PPT课件讲稿)Part 1 Introduction to Network & Information Security Section 1-1 Current Security Situation.pptx
- 杭州电子科技大学:《人工智能导论》课程教学资源(PPT课件讲稿)第九讲 深度学习基础.pdf
- 杭州电子科技大学:《人工智能导论》课程教学资源(PPT课件讲稿)第八讲 神经网络学习.pdf
- 杭州电子科技大学:《人工智能导论》课程教学资源(PPT课件讲稿)第七讲 决策树学习.pdf
- 杭州电子科技大学:《人工智能导论》课程教学资源(PPT课件讲稿)第五讲 不确定性知识的表示与推理.pdf
- 杭州电子科技大学:《人工智能导论》课程教学资源(PPT课件讲稿)第四讲 遗传算法.pdf
- 杭州电子科技大学:《计算机视觉》课程教学资源(PPT课件讲稿)第六讲 立体视觉.pdf
- 杭州电子科技大学:《计算机视觉》课程教学资源(PPT课件讲稿)第四讲 基元检测.pdf
- 杭州电子科技大学:《计算机视觉》课程教学资源(PPT课件讲稿)第二讲 图像采集.pdf
- 杭州电子科技大学:《计算机视觉》课程教学资源(PPT课件讲稿)第三讲 图像预处理.pdf
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(实验设计)DES加密、解密算法过程演示系统的实现.pptx
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(实验设计)RSA加密算法中大数运算的实现.pdf
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(实验设计)椭圆曲线加密算法(Elliptic Curve Cryptosystem, ECC)的设计与实现.pptx
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(实验大纲).pdf
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(PPT课件讲稿)导入内容 Intro.pptx
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(PPT课件讲稿)第1章 密码学概论.pptx
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(PPT课件讲稿)第2章 密码学基础 2.1 密码学分类.pptx
- 哈尔滨工程大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第3章 古典密码体制.pdf
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第4章 分组密码.pdf
- 哈尔滨工程大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第5章 序列密码(主讲:马春光).pdf
- 安徽理工大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第6章 HASH与消息认证码(散列函数与消息认证码).pdf
- 哈尔滨工程大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第7章 公钥密码体制.pdf
- 哈尔滨工程大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第8章 数字签名技术.pdf
- 哈尔滨工程大学:《现代密码学 Modern Cryptography》课程教学资源(课件讲稿)第10章 密钥管理技术.pdf
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第1章 计算机发展简史.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第2章 计算机专业知识体系.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第3章 计算机基础知识.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第4章 操作系统与网络知识.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第5章 程序设计知识.ppt
- 清华大学出版社:《计算机导论 Introduction to Computer Science》课程配套教材教学资源(PPT课件讲稿,第3版)第6章 软件开发知识.ppt