南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration

Basic Enumeration
Basic Enumeration

The twelvefold way f:N→M n balls are put into m bins balls per bin: unrestricted ≤1 ≥1 n distinct balls, m distinct bins mn (m)n n identical balls, m m distinct bins n n distinct balls, 1ifn≤m m identical bins 0 ifn>m n identical balls, 1ifn≤m m identical bins 10 if n>m
balls per bin: unrestricted ≤ 1 ≥ 1 n distinct balls, m distinct bins n identical balls, m distinct bins n distinct balls, m identical bins n identical balls, m identical bins f n balls are put into m bins : N M mn (m)n m n ⇥ 1 if n m 0 if n>m 1 if n m 0 if n>m The twelvefold way

Compositions of an integer n beli k pirates How many ways to assign n beli to k pirates? each receives >1 beli kcompositon ofn((-i) each receives >0 beli weak k-composition of n
Compositions of an integer n beli k pirates How many ways to assign n beli to k pirates? each receives ≥1 beli each receives ≥0 beli k-composition of n weak k-composition of n n 1 k 1 n + k 1 k 1

The twelvefold way f:N→M n balls are put into m bins balls per bin: unrestricted ≤1 ≥1 n distinct balls, m distinct bins mn (m)n n identical balls, m m distinct bins (a-》 n distinct balls, 1ifn≤m m identical bins 10 ifn>m n identical balls, 1ifn≤m m identical bins 10 if n>m
balls per bin: unrestricted ≤ 1 ≥ 1 n distinct balls, m distinct bins n identical balls, m distinct bins n distinct balls, m identical bins n identical balls, m identical bins f n balls are put into m bins : N M mn (m)n m n ⇥ 1 if n m 0 if n>m 1 if n m 0 if n>m The twelvefold way n 1 m 1 ⇥ n + m 1 m 1

Multisets k-combination of S k-subset of S without repetition 3-combinations of S={1,2,3,4 without repetition: {1,2,3},{1,2,4},{1,3,4},{2,3,4} with repetition: {1,1,},{1,1,2},{1,1,3},{1,1,4},{1,2,2},{1,3,3} {1,4,4},2,2,2,{2,2,3},{2,2,4},2,3,3},{2,4,4, {3,3,3},{3,3,4,3,4,4,{4,4,4
Multisets k-subset of S “k-combination of S without repetition” 3-combinations of S = { 1, 2, 3, 4 } without repetition: {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4} with repetition: {1,1,1}, {1,1,2}, {1,1,3}, {1,1,4}, {1,2,2}, {1,3,3}, {1,4,4}, {2,2,2}, {2,2,3}, {2,2,4}, {2,3,3}, {2,4,4}, {3,3,3}, {3,3,4}, {3,4,4}, {4,4,4}

Multisets multiset M on set S: m:S→N multiplicity of m(x):of repetitions of x in M k-multiset on S={1,2,...,n} m(x1)+m(x2)+·+m(xn)=km(xi)≥0 a weak n-composition of k of k-muitiscts on an n-set (》=(:)
Multisets multiset M on set S: m : S N multiplicity of x m(x): # of repetitions of x in M n k ⇥⇥ : # of k-multisets on an n-set k-multiset on S = {x1, x2,...,xn} m(x1) + m(x2) + ··· + m(xn) = k m(xi) 0 a weak n-composition of k n k ⇥⇥ = n + k 1 n 1 ⇥

The twelvefold way f:N→M n balls are put into m bins balls per bin: unrestricted ≤1 ≥1 n distinct balls, m distinct bins mn (m)n n identical balls, m distinct bins () m (a-) n distinct balls, fn≤m m identical bins 0 ifn>m n identical balls, 1ifn≤m m identical bins 10 if n>m
balls per bin: unrestricted ≤ 1 ≥ 1 n distinct balls, m distinct bins n identical balls, m distinct bins n distinct balls, m identical bins n identical balls, m identical bins f n balls are put into m bins : N M mn (m)n m n ⇥ 1 if n m 0 if n>m 1 if n m 0 if n>m The twelvefold way n 1 m 1 ⇥ m n ⇥⇥

Partitions of a set n pirates k boats P=[A1,A2,...,Ak}is a partition of S: A,卡0 A∩A)=0 A1UA2U·UAk=S
Partitions of a set n pirates k boats P = {A1, A2,...,Ak} is a partition of S: Ai = Ai Aj = A1 A2 ··· Ak = S

Partitions of a set P=[A1,A2,...,Ak}is a partition of S: A,卡0 A∩A=0 A1UA2U..UAk=S of k-partitions of an n-set "Stirling number of the second kind" B.-∑{} of partitions of an n-set k=1 “Bell number
Partitions of a set # of k-partitions of an n-set “Stirling number of the second kind” # of partitions of an n-set “Bell number” n k Bn = n k=1 n k P = {A1, A2,...,Ak} is a partition of S: Ai = Ai Aj = A1 A2 ··· Ak = S

Stirling number of the 2nd kind of k-partitions of an n-set }-{"}{-} Case.I In}is not a partition block n is in one of the blocks in a k-partition of [n-1] Case.2 In}is a partition block the remaining 1 blocks forms a (%1)-partition of [n-1]
Stirling number of the 2nd kind # of k-partitions of an n-set n k n k = k n 1 k + n 1 k 1 Case.1 Case.2 {n} is a partition block {n} is not a partition block n is in one of the k blocks in a k-partition of [n-1] the remaining k-1 blocks forms a (k-1)-partition of [n-1]
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(Lp空间插值).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(广义函数).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(辅助知识).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH06 有界线性算子的谱理论 Spetral theory of linear bounded operators.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH05 紧算子和Fredholm算子 Compact Operator & Fredholm Operator.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH04 对偶空间理论 Theory of Dual Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH03 Hilbert空间 Hilbert Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH02 Banach空间 Banach Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH01 度量空间 Metric Space.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)29 期末复习.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)28 有向图.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)27 拉姆齐问题简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)26 着色的计数与色多项式.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)25 与色数有关的几类图和完美图.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)24 图的顶点着色.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)23 图的边着色.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)22 平面性算法.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)21 平面图的判定与涉及平面性的不变量.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Functions.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Catalan Number.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Sieve Methods.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-1.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-2.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Flow and Matching.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Linear Programming.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random1.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random2.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random3.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random4.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random5.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random6.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random7.pdf