南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-2

Ramsey Theorem
Ramsey Theorem

R(k,)A the smallest integer satisfying: if n=R(k,D),for any 2-coloring of Kn, there exists a red Kk or a blue Ki. 2-coloring of Kn f:()--od.blwo} Ramsey Theorem R(kl)is finite. Frank P.Ramsey (1903-1930) R(3,3)=6
R(k,l) the smallest integer satisfying: Ramsey Theorem R(k,l) is finite. 2-coloring of Kn f : [n] 2 ⇥ {red, blue} if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(3,3) = 6 Frank P. Ramsey (1903-1930)

If n=Ri(r;k1,k2,...kr), r-colering:()h ie{1,2,...,r}and Sc[n withS= such that entire is colored by i Theorem(Ramsey 1930) Ri(r;k1,k2,...,kr)is finite
If n ≥ Rt(r; k1, k2, ... , kr), Theorem (Ramsey 1930) Rt(r; k1, k2, ... , kr) is finite. ∀ r-coloring ∃i∈{1,2,...,r} and S⊆[n] with |S|=ki such that entire f : [n] t [r] S t is colored by i

Ifn≥R(r;k≌t(r;k,,) rin:()→月 ョa monochromatic with S[n]and | Theorem(Ramsey 1930) Ri(r;k)is finite
If n ≥ Rt(r; k) Theorem (Ramsey 1930) Rt(r; k) is finite. ∀ r-coloring ∃ a monochromatic with S⊆[n] and |S|=k f : [n] t [r] S t Rt(r; k,..., k r )

Ramsey Theorem Applications
Ramsey Theorem Applications

Happy Ending Problem Any 5 points in the plane,no three on a line,has a subset of 4 points that form a convex quadrilateral
Happy Ending Problem Any 5 points in the plane, no three on a line, has a subset of 4 points that form a convex quadrilateral

Theorem (Erdos-Szekeres 1935) Vm≥3,N(m)such that any set of n≥W(m) points in the plane,no three on a line,contains m points that are the vertices of a convex m-gon. Polygon: convex concave
Polygon: convex concave ∀ m ≥ 3, ∃ N(m) such that any set of n ≥ N(m) points in the plane, no three on a line, contains m points that are the vertices of a convex m-gon. ∀ m ≥ 3, ∃ N(m) such that any set of n ≥ N(m) points in the plane, no three on a line, contains m points that are the vertices of a convex m-gon. Theorem (Erdős-Szekeres 1935)

Theorem (Erdos-Szekeres 1935) Vm≥3,N(m)such that any set of n≥N(m) points in the plane,no three on a line,contains m points that are the vertices of a convex m-gon. Polygon: convex concave
Polygon: convex concave ∀ m ≥ 3, ∃ N(m) such that any set of n ≥ N(m) points in the plane, no three on a line, contains m points that are the vertices of a convex m-gon. ∀ m ≥ 3, ∃ N(m) such that any set of n ≥ N(m) points in the plane, no three on a line, contains m points that are the vertices of a convex m-gon. Theorem (Erdős-Szekeres 1935)

Theorem (Erdos-Szekeres 1935) Vm≥3,N(m)such that any set of n≥W(m) points in the plane,no three on a line,contains m points that are the vertices of a convex m-gon. W(m)=R3(2;m,m) XI R3(2;m,m) f:(3)→{0,1} 3ScX,S m monochromatic (3) X:set of points in the plane,no 3 on a line Va,b,c∈X,△abc:points in triangle abc f({a,b,c})=Aabe mod 2
∀ m ≥ 3, ∃ N(m) such that any set of n ≥ N(m) points in the plane, no three on a line, contains m points that are the vertices of a convex m-gon. ∀ m ≥ 3, ∃ N(m) such that any set of n ≥ N(m) points in the plane, no three on a line, contains m points that are the vertices of a convex m-gon. Theorem (Erdős-Szekeres 1935) N(m) = R3(2; m, m) |X| = R3(2; m, m) S 3 ⇥ monochromatic ⇥f : X 3 ⇥ {0, 1} X: set of points in the plane, no 3 on a line f({a, b, c}) = |abc| mod 2 ⇥a, b, c X, abc: points in triangle abc a b c S X, |S| = m

X:set of points in the plane,no 3 on a line Va,b,c∈X,△abc:points in triangle abc f({a,b,c})=△abe mod2 2 X=R(2;m,m)f:(3)→{0,1}3SCX,|S1=m S∈(X) monochromatic(③) S is a convex m-gon Otherwise,b disjoint union: Contradiction! △abe=△abdU△acdU△bcdU{d} f(abc)=f(abd)+f(acd)+f(bcd)+1 C
|X| = R3(2; m, m) S 3 ⇥ monochromatic ⇥f : X 3 ⇥ {0, 1} ⇥S X m ⇥ X: set of points in the plane, no 3 on a line f({a, b, c}) = |abc| mod 2 ⇥a, b, c X, abc: points in triangle abc a b c S is a convex m-gon Otherwise, a b c d abc = abd ⇥ acd ⇥ bcd disjoint union: f(abc) = f(abd) + f(acd) + f(bcd)+1 {d} Contradiction! S X, |S| = m
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-1.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Sieve Methods.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Catalan Number.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Functions.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(Lp空间插值).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(广义函数).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(辅助知识).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH06 有界线性算子的谱理论 Spetral theory of linear bounded operators.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH05 紧算子和Fredholm算子 Compact Operator & Fredholm Operator.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH04 对偶空间理论 Theory of Dual Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH03 Hilbert空间 Hilbert Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH02 Banach空间 Banach Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH01 度量空间 Metric Space.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Flow and Matching.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Linear Programming.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random1.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random2.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random3.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random4.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random5.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random6.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random7.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random10.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random11.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random12.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random13.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random8.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random9.pdf
- 运城学院:《抽象代数 Abstract algebra》课程教学资源(习题与试题)2015年1月抽象代数试题及答案(B).pdf
- 运城学院:《抽象代数 Abstract algebra》课程教学资源(习题与试题)2015年1月抽象代数试题及答案(A).pdf
- 运城学院:《抽象代数 Abstract algebra》课程教学资源(习题与试题)2017年1月抽象代数试题及答案(A).pdf