南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence

Counting (labeled)trees …。. "How many different trees 3 can be formed from n distinct vertices?" 39 8 8人人
Counting (labeled) trees “How many different trees can be formed from n distinct vertices?

Cayley's formula: There are nT-2 trees on n distinct vertices. 00 八入八 83 6 P 9 足人人 Arthur Cayley
Cayley’s formula for the number of trees Chapter 30 Arthur Cayley One of the most beautiful formulas in enumerative combinatorics concerns the number of labeled trees. Consider the set N = {1, 2,...,n}. How many different trees can we form on this vertex set? Let us denote this number by Tn. Enumeration “by hand” yields T1 = 1, T2 = 1, T3 = 3, T4 = 16, with the trees shown in the following table: 434 3 4 3 4 3 4 343434 3434 3 4 3 4 3 4 343434 1 1 12 12 2 1 2 1212 1 1 2 1 2 3 2 2 1 2 1 2 1212 1 2 1 2 1 2 121212 1 3 3 3 Note that we consider labeled trees, that is, although there is only one tree of order 3 in the sense of graph isomorphism, there are 3 different labeled trees obtained by marking the inner vertex 1, 2 or 3. For n = 5 there are three non-isomorphic trees: 5 6 60 0 For the first tree there are clearly 5 different labelings, and for the second and third there are 5! 2 = 60 labelings, so we obtain T5 = 125. This should be enough to conjecture Tn = nn−2, and that is precisely Cayley’s result. Theorem. There are nn−2 different labeled trees on n vertices. This beautiful formula yields to equally beautiful proofs, drawing on a variety of combinatorial and algebraic techniques. We will outline three of them before presenting the proof which is to date the most beautiful of them all. Arthur Cayley There are nn2 trees on n distinct vertices. Cayley’s formula:

Prufer Code leaf:vertex of degree 1 removing a leaf from T,still a tree Ta: T1=T; 5 for i=1 to n-1 smallest leaf in T; (ui,v):edge in Ti; T1=delete ui from Ti; :2,4,5,6,3,1 Prufer code: :4,3,1,3,1,7 (1,2,…,m-2)
Prüfer Code 4 3 6 2 5 1 7 T1 = T ; ui : smallest leaf in Ti ; (ui,vi) : edge in Ti ; Ti+1 = delete ui fromTi ; for i = 1 to n-1 Prüfer code: (v1, v2, ... , vn-2) T : ui : vi : T23145 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 T6 leaf : vertex of degree 1 removing a leaf from T, still a tree

edges of T:(u,),1≤i≤nm-l u:smallest leaf in T Un-1 =n a tree has≥2 leaves } u≠m n is never deleted T: Only need to recover 5 every ui from (v1,U1,...,Un-2). u is the smallest number not in {u1,,ua-1}U{v,.,vn-1} :2,4,5,6,3,1 :4,3,1,3,1,7 (1,2,…,vm-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) edges of T : (ui,vi), 1≤i≤n-1 vn-1 = n a tree has ≥2 leaves ui : smallest leaf in Ti } ui ≠ n n is never deleted Only need to recover every ui from (v1, v1, ... , vn-2). {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in

u is the smallest number not in {u1,,u-1}U{v,,vn-1} V vertex v in T, occurrences of v in u1,u2,...un-1,Un-1:1 occurrences of v in edges (ui,v),1<i<n-1:degr(v) T: 2 occurrences of v in Prufer code:(Ⅵ,2,…,vm-2) degr(v)-1 :2,4,5,6,3,1 :4,3,1,3,1,7 (1,2,.,m-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in ∀ vertex v in T, # occurrences of v in u1, u2, ... , un-1, vn-1 : 1 # occurrences of v in edges (ui,vi), 1≤i≤n-1: degT(v) # occurrences of v in Prüfer code: (v1, v2, ... , vn-2) degT(v)-1

u is the smallest number not in {u1,,u-1}U{v,,vn-1} V vertex v in Ti, #occurrences of v in ui,uit1,..un-1,Un-1 1 occurrences of v in edges (ui,v),i<j<n-1:degr:(v) T: occurrences of v in (vi,...Un-2) degr,(v)-1 leaf v of Ti: :2,4,5,6,3,1 in {ui,Uitl,...Un-1,Un-1 :4,3,1,3,1,7 not in {vi,Vit1,...Un-2 (1,2,.,Vm-2 smallest leaf in T
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in ∀ vertex v in Ti, # occurrences of v in ui, ui+1, ... , un-1, vn-1 : 1 # occurrences of v in edges (uj,vj), i≤j≤n-1: # occurrences of v in (vi, ... , vn-2) LMOTi (v) LMOTi (v) 1 leaf v of Ti : in {ui, ui+1, ... , un-1, vn-1} not in {vi, vi+1, ... , vn-2} ui : smallest leaf in Ti

u is the smallest number not in {u1,,u-1}U{v2,,vn-1} T: ② 5 T=empty graph; Un-1 =n; for i=1 to n-1 i:smallest number not in {u1,,1}lU{i,m-1} :2,4,5,6,3,1 add edge (ui,v:)to T; :4,3,1,3,1,7 (1,2,…,vm-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in T = empty graph; ui : smallest number not in add edge (ui,vi) to T ; for i = 1 to n-1 {u1,...,ui-1}∪{vi,...,vn-1} vn-1 = n ;

Prufer code is reversible > 1-1 every(1,v2,,m-2)∈{1,2,,n}n-2 is decodable to a tree > onto T: 2 5 T=empty graph; Un-1 =n; for i=1 to n-1 u:smallest number not in {1,…,1}U{z,…,n-1} :2,4,5,6,3,1 add edge (ui,v:)to T; :4,3,1,3,1,7 (1,2,.,Vm-2
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) T = empty graph; ui : smallest number not in add edge (ui,vi) to T ; for i = 1 to n-1 {u1,...,ui-1}∪{vi,...,vn-1} vn-1 = n ; Prüfer code is reversible 1-1 every (v1, v2,...,vn2) {1, 2,...,n}n2 is decodable to a tree onto

Prufer code is reversible > 1-1 every(1,v2,,m-2)∈{1,2,.,n}n-2 is decodable to a tree > onto Cayley's formula: There are n"-2 trees on n distinct vertices
Prüfer code is reversible 1-1 every (v1, v2,...,vn2) {1, 2,...,n}n2 is decodable to a tree onto There are nn2 trees on n distinct vertices. Cayley’s formula:

Double Counting of sequences of adding directed edges to an empty graph to form a rooted tree
# of sequences of adding directed edges to an empty graph to form a rooted tree Double Counting
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Sieve Methods.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Catalan Number.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Functions.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(Lp空间插值).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(广义函数).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(辅助知识).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH06 有界线性算子的谱理论 Spetral theory of linear bounded operators.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH05 紧算子和Fredholm算子 Compact Operator & Fredholm Operator.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH04 对偶空间理论 Theory of Dual Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH03 Hilbert空间 Hilbert Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH02 Banach空间 Banach Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH01 度量空间 Metric Space.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)29 期末复习.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)28 有向图.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)27 拉姆齐问题简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)26 着色的计数与色多项式.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-1.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-2.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Flow and Matching.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Linear Programming.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random1.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random2.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random3.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random4.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random5.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random6.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random7.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random10.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random11.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random12.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random13.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random8.pdf