南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-1

Ramsey Theory
Ramsey Theory

"In any party of six people,either at least three of them are mutual strangers or at least three ofthem are mutual acquaintances" Color edges of K6 with 2 colors. There must be a monochromatic K3. Frank P.Ramsey (1903-1930)
Frank P. Ramsey (1903-1930) “In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances” Color edges of K6 with 2 colors. There must be a monochromatic K3

"In any party of six people,either at least three of them are mutual strangers or at least three of them are mutual acquaintances" Color edges of K6 with 2 colors. There must be a monochromatic K3. ON A PROBLEM OF FORMAL LOGIC By F.P.RAMSEY. [Received 28 November,1928.-Read 13 December,1928.) This paper is primarily concerned with a special case of one of the leading problems of mathematical logic,the problem of finding a regular Frank P.Ramsey procedure to determine the truth or falsity of any given logical formula'. But in the course of this investigation it is necessary to use certain (1903-1930) theorems on combinations which have an independent interest and are most conveniently set out by themselves beforehand
Frank P. Ramsey (1903-1930) “In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances” Color edges of K6 with 2 colors. There must be a monochromatic K3

R(k,l)A the smallest integer satisfying: if n=R(k,D),for any 2-coloring of Kn, there exists a red Kk or a blue Ki. 2-coloring of Kn f:(),(coz.biuo) Ramsey Theorem R(kl)is finite. Frank P.Ramsey (1903-1930) R(3,3)=6
R(k,l) the smallest integer satisfying: Ramsey Theorem R(k,l) is finite. 2-coloring of Kn f : [n] 2 ⇥ {red, blue} if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(3,3) = 6 Frank P. Ramsey (1903-1930)

if n=R(k,l),for any 2-coloring of Kn, there exists a red Kk or a blue Ki. R(k,2)=k;R(2,)=1; R(k,)≤R(k,I-1)+R(k-1,)
if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(k,2) = k ; R(2,l) = l ; R(k,l) ≤ R(k,l-1) + R(k-1,l)

if n=R(k,D,for any 2-coloring of Kn, there exists a red Kk or a blue Ki. R(k,)≤R(k,l-1)+R(k-1,) take n R(k,1-1)+R(k-1,1) arbitrary vertex v ISI+I71+1=n R(k,1-1)+R(k-1,1) N≥R) Kkin S Kil in S or Ki T≥Rk1,0rKmT K Kiin T
S T if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(k,l) ≤ R(k,l-1) + R(k-1,l) v take n = R(k,l-1) + R(k-1,l) arbitrary vertex v |S| + |T| + 1 = n = R(k,l-1) + R(k-1,l) |S| ≥ R(k,l-1) |T| ≥ R(k-1,l) or or Kk in S Kl-1 in S or Kk-1 in T Kl in T +v Kl +v Kk

if n=R(k,l),for any 2-coloring of Kn, there exists a red Ki or a blue Ki. R(k2)=k;R(2,)=I; R(k,)≤R(k,l-1)+R(k-1,) Ramsey Theorem R(k,is finite. By induction: k+1-2 R(k,)≤(k-1
if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(k,2) = k ; R(2,l) = l ; R(k,l) ≤ R(k,l-1) + R(k-1,l) Ramsey Theorem R(k,l) is finite. R(k,l) ⇥ k + l 2 k 1 By induction: ⇥

Ramsey Number Lovasz Local Lemma (2可≤传)=0() k,112 3 4 5 6 8 9 10 111 1 1 1 1 A 1 2123 4 5 6 1 8 9 10 313 6 9 14 18 23 28 36 40-43 414 9 18 25 35-41 49-61 56-84 73-115 92-149 515 14 25 43-49 58-87 80-143 101-216 125-316 143-442 616 18 35-41 58-87 102-165 113-298 127-495 169-780 179-1171 71723 49-61 80-143 113-298 205-540 216-1031 233-1713 289-2826 1828 8 56-84 101-216127-495216-1031 282-1870 317-3583 317-6090 91936 73-115125-316169-780233-1713317-3583565-6588 580-12677 1011040-4392-149143-442179-1171289-2826317-6090 580-12677798-23556
Ramsey Number k2k/2 ⇥ ⇥ R(k, k) ⇥ ⇤2k 2 k 1 ⌅ = O 4k k Lovász Local Lemma ⇥

Muticolor if n=R(k,l),for any 2-coloring of Knt, there exists a red Kk or a blue Ki. R(R(k1,k2,,k) ifn≥R(r;k1,k2,.,k), for any r-coloring of K,there exists a monochromatic ki-clique with color i for some ie {1,2,...r}. R(r;k1,,k-2,k-1,k)≤R(r-1;k1,…,k-2,R(2;k-1,k) the mixing color trick: color
Multicolor if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(Rr; (k1, k2, ... , , ... , kr) if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. R(r; k1, ... , kr-2, kr-1, kr) ≤ R(r-1; k1, ... , kr-2, R(2; kr-1, kr)) the mixing color trick: color

Muticolor if n=R(k,l),for any 2-coloring of Knt, there exists a red Kk or a blue Ki. R(r;k1,k2,.,k) ifn≥R(r;k1,k2,.,k), for any r-coloring of Kn,there exists a monochromatic ki-clique with color i for some ie{1,2,...,r}. Ramsey Theorem R(r;k1,k2,...,k)is finite
R(r; k1, k2, ... , kr) Multicolor if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. Ramsey Theorem R(r; k1, k2, ... , kr) is finite
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Sieve Methods.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Catalan Number.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Functions.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(Lp空间插值).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(广义函数).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)Sobolev空间 SobolevSpace(辅助知识).pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH06 有界线性算子的谱理论 Spetral theory of linear bounded operators.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH05 紧算子和Fredholm算子 Compact Operator & Fredholm Operator.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH04 对偶空间理论 Theory of Dual Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH03 Hilbert空间 Hilbert Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH02 Banach空间 Banach Space.pdf
- 电子科技大学:《泛函分析 Functional Analysis》课程教学资源(课件讲稿)CH01 度量空间 Metric Space.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)29 期末复习.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory-2.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Flow and Matching.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Linear Programming.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random1.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random2.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random3.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random4.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random5.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random6.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random7.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random10.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random11.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random12.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random13.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random8.pdf
- 南京大学:《概率与计算 Probability and Computing》课程教学资源(课件讲稿)random9.pdf
- 运城学院:《抽象代数 Abstract algebra》课程教学资源(习题与试题)2015年1月抽象代数试题及答案(B).pdf
- 运城学院:《抽象代数 Abstract algebra》课程教学资源(习题与试题)2015年1月抽象代数试题及答案(A).pdf