复旦大学:《离散数学》习题课讲义(李弋)03

Discrete mathematics Yi Li Software school Fudan universit March 12. 2013
. . Discrete Mathematics Yi Li Software School Fudan University March 12, 2013 Yi Li (Fudan University) Discrete Mathematics March 12, 2013 1 / 20

Review of lattice Special Lattice Boolean algebra
Review of Lattice Ideal Special Lattice Boolean Algebra Yi Li (Fudan University) Discrete Mathematics March 12, 2013 2 / 20

Examples of Proof Zenos paradox Zhuang Zi's paradox o Gong Sunlong's"a white horse is not a horse How can you persuade yourself and the others?
Examples of Proof Zeno’s paradox Zhuang Zi’s paradox Gong Sunlong’s “a white horse is not a horse” ... How can you persuade yourself and the others? Yi Li (Fudan University) Discrete Mathematics March 12, 2013 3 / 20

Examples of Proof A×iom The axiom of group theory can be formulated as follows (G1) For all 9, 2: (aoy)ox=ao(yo z G2)Fora∥:xoe=x (G3)For every there is a y such that r y=e.(right Inverse Theorem For every a there is a y such that yo =e. left inverse
Examples of Proof . Axiom . . The axiom of group theory can be formulated as follows: (G1) For all x, y, z: (x ◦ y) ◦ z = x ◦ (y ◦ z). (G2) For all x: x ◦ e = x. (G3) For every x there is a y such that x ◦ y = e. (right inverse) . Theorem . . For every x there is a y such that y ◦ x = e.(left inverse) Yi Li (Fudan University) Discrete Mathematics March 12, 2013 4 / 20

What is LogIc o Premise Argument o Conclusion o Follow o Proof
What is Logic Premise Argument Conclusion Follow Proof Yi Li (Fudan University) Discrete Mathematics March 12, 2013 5 / 20

History of Mathematical Logic Aristotle(384-322 B C. theory of syllogistic o De Morgan(1806-71), Boole(1815-64) Schroder(1841-1902 o Fregel(1848-1925), Russell(18721970) Post(1897-1954), Godel(1906-78), Henkin(1921-2006), Herbrand(1908-31) o Robbinson(1930-): Beth and Smullyan o Leibniz(1646-1716)and Hilbert(1862-1943)
History of Mathematical Logic Aristotle(384-322 B.C.): theory of syllogistic De Morgan(1806-71), Boole(1815-64), Schr¨oder(1841-1902) Frege(1848-1925), Russell(1872-1970) Post(1897-1954), G¨odel (1906-78), Henkin(1921-2006), Herbrand(1908-31) Robbinson(1930-); Beth and Smullyan Leibniz(1646-1716) and Hilbert(1862-1943) Yi Li (Fudan University) Discrete Mathematics March 12, 2013 6 / 20

Introduction to Mathematical Logic o First order logic Propositional Logic o Predicate Logic o high order logic Other type of logic Modal logic Intuitionistic logic ● Temporal logic
Introduction to Mathematical Logic First order logic Propositional Logic Predicate Logic High order logic Other type of logic Modal logic Intuitionistic logic Temporal logic Yi Li (Fudan University) Discrete Mathematics March 12, 2013 7 / 20

Introduction to Mathematical Logic o Proof system Axiom Tableaux o Resolution o Two Components o Semantics o Algorithmic approach
Introduction to Mathematical Logic Proof system Axiom Tableaux Resolution Two Components Syntax Semantics Algorithmic approach Yi Li (Fudan University) Discrete Mathematics March 12, 2013 8 / 20

Order Definition(Partial order A partial order is a set S with a binary relation on S, which is transitive and irreflexive Definition(Linear order) a partial order is a linear order. if it satisfies the trichotomy law:. <y or a=y or y<.. Definition(Well ordering) A linear order is well ordered if every nonempty set A of s has a least element
Order . Definition (Partial order) . . A partial order is a set S with a binary relation < on S, which is transitive and irreflexive. . Definition (Linear order) . . A partial order < is a linear order, if it satisfies the trichotomy law: x < y or x = y or y < x. . Definition (Well ordering) . . A linear order is well ordered if every nonempty set A of S has a least element. Yi Li (Fudan University) Discrete Mathematics March 12, 2013 9 / 20

Countable and infinite Definition( Countable) A set A is countable if there is a one-to-one mapping from a to M Definition(Finite A set A is finite if there is a one-to-one mapping from A to 0, 1,., n-1 for some n EM Definition o If A is not countable, it is uncountable o If A is not finite it is infinite
Countable and Infinite . Definition (Countable) . . A set A is countable if there is a one-to-one mapping from A to N . . Definition (Finite) . . A set A is finite if there is a one-to-one mapping from A to {0, 1, . . . , n − 1} for some n ∈ N . . Definition . . 1. If A is not countable, it is uncountable. 2. If A is not finite, it is infinite. Yi Li (Fudan University) Discrete Mathematics March 12, 2013 10 / 20
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》习题课讲义(李弋)02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)05 支配集、覆盖集、独立集、匹配与着色.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)04 平面图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)03 树(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)02 欧拉图与哈密顿图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)01 图的基本概念.pdf
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)28/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)27/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)26/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)25/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)24/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)23/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)22/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)21/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)20/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)19/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)18/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)17/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)16/28.ppt
- 复旦大学:《离散数学》习题课讲义(李弋)04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)07 Tableau proof system.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)10 Limits of propositional logic Predicates and quantifiers Language of predicate logic.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)01 Lattice(I).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)02 Lattice(II).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)03 Introduction to Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)07 Tableau Proof System.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)08 Soundness and Completeness of Propositional Logic.pdf