复旦大学:《离散数学》习题课讲义(李弋)08 Syntax and semantics Soundness theorem Completeness theorem

Discrete mathematics Yi li Software school Fudan University April 16, 2013
. . Discrete Mathematics Yi Li Software School Fudan University April 16, 2013 Yi Li (Fudan University) Discrete Mathematics April 16, 2013 1 / 17

Review Atomic tableaux o CST and properties
Review Atomic tableaux CST and properties Yi Li (Fudan University) Discrete Mathematics April 16, 2013 2 / 17

Outline Syntax and semantics Soundness theorem o Completeness theorem
Outline Syntax and semantics Soundness theorem Completeness theorem Yi Li (Fudan University) Discrete Mathematics April 16, 2013 3 / 17

Syntax Semantics Example Give you two Chinese characters“更衣”,What'sit mean o It means change clothes in modern Chinese o It means go to washroom in ancient chinese E xample Give an acronym "iP" what's it mean? o Internet protocol in network o Integer Programming in operation research o Interactive proof in complexity
Syntax & Semantics . Example . . Give you two Chinese characters “更衣”, what’s it mean? It means change clothes in modern Chinese. It means go to washroom in ancient Chinese. . Example . . Give an acronym ”IP”, what’s it mean? Internet Protocol in network. Integer Programming in operation research. Interactive proof in complexity. Yi Li (Fudan University) Discrete Mathematics April 16, 2013 4 / 17

Syntax Semantics ample Give you the following programming segments O in C, printf("Hello World! ) O in Java, system- print("Hello World! " o in C++, cout<<"Hello World! All of them just output Hello World! "on the screen
Syntax & Semantics . Example . . Give you the following programming segments: 1. in C, printf(”Hello World!”); 2. in Java, system.print(”Hello World!”); 3. in C++, cout<<”Hello World!”; All of them just output ”Hello World!” on the screen. Yi Li (Fudan University) Discrete Mathematics April 16, 2013 5 / 17

Syntax Semantics in PL What's syntax? o What's semantic? o What's relationship between them?
Syntax & Semantics in PL What’s syntax? What’s semantic? What’s relationship between them? Yi Li (Fudan University) Discrete Mathematics April 16, 2013 6 / 17

Soundness ample Consider Pierce law (A→B)→A)→A o Give its tableau proof o Give its truth table
Soundness . Example . . Consider Pierce Law ((A → B) → A) → A. Give its tableau proof. Give its truth table. Yi Li (Fudan University) Discrete Mathematics April 16, 2013 7 / 17

Sign Noncontradictory Path ample Given proposition(A→B)→(A→O)→(B→C, there is a truth valuation which make it false Consider the tableau with the root as F(A→B)→(A→C)→(B→O
Sign & Noncontradictory Path . Example . . Given proposition ((A → B) → (A → C)) → (B → C), there is a truth valuation which make it false. Consider the tableau with the root as F ((A → B) → (A → C)) → (B → C) Yi Li (Fudan University) Discrete Mathematics April 16, 2013 8 / 17

Soundness emma If v is a valuation that agrees with the root entry of a given tableau T given as UTn, then t has a path P every entry of which agrees with V
Soundness . Lemma . . If V is a valuation that agrees with the root entry of a given tableau τ given as ∪τn, then τ has a path P every entry of which agrees with V. Yi Li (Fudan University) Discrete Mathematics April 16, 2013 9 / 17

Soundness( Cont Theorem(Soundness) If a is tableau provable, then a is valid, i.e. Fa=Fa
Soundness(Cont.) . Theorem (Soundness) . . If α is tableau provable, then α is valid, i.e. ⊢ α ⇒⊨ α. Yi Li (Fudan University) Discrete Mathematics April 16, 2013 10 / 17
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》习题课讲义(李弋)07 Tableau proof system.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)03.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)05 支配集、覆盖集、独立集、匹配与着色.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)04 平面图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)03 树(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)02 欧拉图与哈密顿图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)01 图的基本概念.pdf
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)28/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)27/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)26/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)25/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)24/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)23/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)22/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)21/28.ppt
- 复旦大学:《离散数学》习题课讲义(李弋)09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)10 Limits of propositional logic Predicates and quantifiers Language of predicate logic.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)01 Lattice(I).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)02 Lattice(II).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)03 Introduction to Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)07 Tableau Proof System.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)11 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)12 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)13 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)14 Tableau Proof of Predicate Logic.pdf