复旦大学:《离散数学》习题课讲义(李弋)04 Propositions Truth table Adequacy

Discrete mathematics Yi Li Software school Fudan universit March 17. 2014
Discrete Mathematics Yi Li Software School Fudan University March 17, 2014 Yi Li (Fudan University) Discrete Mathematics March 17, 2014 1 / 25

Review Introduction o Tree o Konig lemma
Review Introduction Tree K¨onig lemma Yi Li (Fudan University) Discrete Mathematics March 17, 2014 2 / 25

utline Propositions Truth table Adequacy
Outline Propositions Truth table Adequacy Yi Li (Fudan University) Discrete Mathematics March 17, 2014 3 / 25

Sentences dle Consider the following statements
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25

Sentences amp dle Consider the following statements @ I am a student
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25

Sentences amp dle Consider the following statements o am a student @I am not a student
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25

Sentences amp dle Consider the following statements o am a student o I am not a student o I am a student and I study computer science
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25

Sentences amp dle Consider the following statements o am a student o I am not a student I am a student and i study computer science e I am a boy or I am a girl
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25

Sentences amp dle Consider the following statements o am a student o I am not a student I am a student and i study computer science I am a boy or I am a girl o If I am a student i have a class in a week
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25

Sentences amp dle Consider the following statements o am a student o I am not a student I am a student and I study computer science I am a boy or I am a girl If I am a student i have a class in a week I am student if and only if I am a member of some unIversity
Sentences Example Consider the following statements: 1 I am a student. 2 I am not a student. 3 I am a student and I study computer science. 4 I am a boy or I am a girl. 5 If I am a student, I have a class in a week. 6 I am student if and only if I am a member of some university. Yi Li (Fudan University) Discrete Mathematics March 17, 2014 4 / 25
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》习题课讲义(李弋)03.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)05 支配集、覆盖集、独立集、匹配与着色.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)04 平面图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)03 树(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)02 欧拉图与哈密顿图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)01 图的基本概念.pdf
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)28/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)27/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)26/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)25/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)24/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)23/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)22/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)21/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)20/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)19/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)18/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)17/28.ppt
- 复旦大学:《离散数学》习题课讲义(李弋)05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)07 Tableau proof system.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)10 Limits of propositional logic Predicates and quantifiers Language of predicate logic.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)01 Lattice(I).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)02 Lattice(II).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)03 Introduction to Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)07 Tableau Proof System.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)09 Deduction from Premises,Compactness, and Applications.pdf