复旦大学:《离散数学》PPT教学课件(赵一鸣)28/28

I Introduction to Set Theory ◆1. Sets and subsets Representation of set: o Listing elements Set builder notion, Recursive definition ◆∈,c,C ◆P(A) 2. Operations on Sets o Operations and their properties ◆A=?B ◆AB, and bca ◆ Properties o Theorems, examples, and exercises
ⅠIntroduction to Set Theory 1. Sets and Subsets Representation of set: Listing elements, Set builder notion, Recursive definition , , P(A) 2. Operations on Sets Operations and their Properties A=?B AB, and B A Properties Theorems, examples, and exercises

+3. Relations and Properties of relations ◆ reflexive, irreflexive o symmetric, asymmetric ,antisymmetric ◆ Transitive Closures of relations ◆r(R),s(R),t(R)=? Theorems, examples, and exercises 44. Operations on relations Inverse relation, Composition o Theorems, examples, and exercises
3. Relations and Properties of relations reflexive ,irreflexive symmetric , asymmetric ,antisymmetric Transitive Closures of Relations r(R),s(R),t(R)=? Theorems, examples, and exercises 4. Operations on Relations Inverse relation, Composition Theorems, examples, and exercises

紫◆5. Equivalence relations o Equivalence relations ◆ equivalence class .6.Partial order relations and Hasse Diagrams Extremal elements of partially ordered sets: maximal element. minimal element o greatest element, least element o upper bound, lower bound least upper bound, greatest lower bound o Theorems examples. and exercises
5. Equivalence Relations Equivalence Relations equivalence class 6.Partial order relations and Hasse Diagrams Extremal elements of partially ordered sets: maximal element, minimal element greatest element, least element upper bound, lower bound least upper bound, greatest lower bound Theorems, examples, and exercises

◆7. Functions ◆ one to one,onto, o one-to-one correspondence 4 Composite functions and Inverse functions ◆ Cardinality,Np o Theorems, examples, and exercises
7.Functions one to one, onto, one-to-one correspondence Composite functions and Inverse functions Cardinality, 0 . Theorems, examples, and exercises

tII Combinatorics 1. Pigeonhole principle Pigeon and pigeonholes example, exercise
II Combinatorics 1. Pigeonhole principle Pigeon and pigeonholes example,exercise

Permutations and combinations Permutations of sets combinations of sets circular permutation Permutations and Combinations of multisets Formulae o inclusion-exclusion principle generating functions integral solutions of the equation ◆ example, exercise
2. Permutations and Combinations Permutations of sets, Combinations of sets circular permutation Permutations and Combinations of multisets Formulae inclusion-exclusion principle generating functions integral solutions of the equation example,exercise

Applications of Inclusion -Exclusion principle theorem 3.15, theorem 3. 16,example, exercise Applications generating functions and Exponential generating functions e=1+x+x2/2!+.+x"/n!+…; x+x2/2!++xm/n!+,=ex-1 ex=1-x+x2/2!+…+(-1)"x"/n!+……; 1+x2+…+x2n(2n)+…=(ex+e)/2; x+x3/3!+…+x2am+1(2n+1)+…,=(ex-e-)2 +3. recurrence relation o Using Characteristic roots to solve recurrence relations USing Generating functions to solve recurrence relations ◆ example, exercise
Applications of Inclusion-Exclusion principle theorem 3.15,theorem 3.16,example,exercise Applications generating functions and Exponential generating functions e x=1+x+x2 /2!+…+xn /n!+…; x+x2 /2!+…+xn /n!+…=ex -1; e -x=1-x+x2 /2!+…+(-1)nx n /n!+…; 1+x2 /2!+…+x2n/(2n)!+…=(ex+e-x )/2; x+x3 /3!+…+x2n+1/(2n+1)!+…=(ex -e -x )/2; 3. recurrence relation Using Characteristic roots to solve recurrence relations Using Generating functions to solve recurrence relations example,exercise

YIlI Graphs 1. Graph terminology The degree of a vertex, 8(G),A(G), Theorem 5.1 5.2 k-regular, spanning subgraph, induced subgraph by v∈V the complement of a graph g, connected, connected components strongly connected, connected directed weakly connected
III Graphs 1. Graph terminology The degree of a vertex,(G), (G), Theorem 5.1 5.2 k-regular, spanning subgraph, induced subgraph by V'V the complement of a graph G, connected, connected components strongly connected, connected directed weakly connected

2. connected. Euler and hamilton paths e Prove g is connected (1)there is a path from any vertex to any other vertex .(2 )Suppose G is disconnected +1) connected components(k>1) 2There exist u, v such that is no path between uv o Shortest-path problem
2. connected, Euler and Hamilton paths Prove: G is connected (1)there is a path from any vertex to any other vertex (2)Suppose G is disconnected 1) k connected components(k>1) 2)There exist u,v such that is no path between u,v Shortest-path problem

Prove that the complement of a disconnected graph is connected. Let g be a simple graph with n vertices. Show that ifo(G)>n/2-1, then g is connected t Show that a simple graph g with an vertices is connected if it has more than (n-1)(n-2)/2 edges. TheoremS, examples, and exercises
Prove that the complement of a disconnected graph is connected. Let G be a simple graph with n vertices. Show that ifδ(G) >[n/2]-1, then G is connected. Show that a simple graph G with an vertices is connected if it has more than (n-1)(n-2)/2 edges. Theorems, examples, and exercises
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)27/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)26/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)25/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)24/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)23/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)22/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)21/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)20/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)19/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)18/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)17/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)16/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)15/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)14/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)13/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)12/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)11/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)10/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)09/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)08/28.ppt
- 复旦大学:《离散数学》课程教学讲义(图论)01 图的基本概念.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)02 欧拉图与哈密顿图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)03 树(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)04 平面图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)05 支配集、覆盖集、独立集、匹配与着色.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)03.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)07 Tableau proof system.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)10 Limits of propositional logic Predicates and quantifiers Language of predicate logic.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)15 Application of Logic Limitation of First Order Logic.pdf