复旦大学:《离散数学》习题课讲义(李弋)06 Truth assignment Truth valuation Tautology Consequence

Discrete mathematics Software school Fudan University April 2, 2013
. . Discrete Mathematics Yi Li Software School Fudan University April 2, 2013 Yi Li (Fudan University) Discrete Mathematics April 2, 2013 1 / 20

Review o Formation tree o Parsing algorithm
Review Formation tree Parsing algorithm Yi Li (Fudan University) Discrete Mathematics April 2, 2013 2 / 20

utline o Truth assignment Truth valuation Tautology o Consequence
Outline Truth assignment Truth valuation Tautology Consequence Yi Li (Fudan University) Discrete Mathematics April 2, 2013 3 / 20

Truth Assignment How we discuss the truth of propositional letters? Definition(Assig gnment A truth assignment A is a function that assigns to each propositional letter A a unique truth value 4(A)∈{T,F}
Truth Assignment How we discuss the truth of propositional letters? . Definition (Assignment) . . A truth assignment A is a function that assigns to each propositional letter A a unique truth value A(A) ∈ {T, F}. Yi Li (Fudan University) Discrete Mathematics April 2, 2013 4 / 20

Truth∨ aluation How we discuss the truth of propositions? Exampl e Truth assignment of a and B and valuation of (av B B(a③)
Truth Valuation How we discuss the truth of propositions? . Example . . Truth assignment of α and β and valuation of (α ∨ β). α β (α ∨ β) T T T T F T F T T F F F Yi Li (Fudan University) Discrete Mathematics April 2, 2013 5 / 20

Assignment and valuation Definition(Valuation A truth valuation v is a function that assigns to each proposition a a unique truth value v(a) so that its value on a compund proposition is determined in accordance with the appropriate truth tables Specially, v(a) determines one possible truth assignment if a is a propositional letter
Assignment and Valuation . Definition (Valuation) . . A truth valuation V is a function that assigns to each proposition α a unique truth value V(α) so that its value on a compund proposition is determined in accordance with the appropriate truth tables. Specially, V(α) determines one possible truth assignment if α is a propositional letter. Yi Li (Fudan University) Discrete Mathematics April 2, 2013 6 / 20

Assignment and valuation merrem Given a truth assignment a there is a unique truth valuation V such that V(a)=A(a) for every propositional letter a roo The proof can be divided into two step O Construct a v from a by induction on the depth of the associated formation tree o Prove the uniqueness of v with the same A by nduction bottom-up
Assignment and Valuation . Theorem . . Given a truth assignment A there is a unique truth valuation V such that V(α) = A(α) for every propositonal letter α. . Proof. . . The proof can be divided into two step. 1. Construct a V from A by induction on the depth of the associated formation tree. 2. Prove the uniqueness of V with the same A by induction bottom-up. Yi Li (Fudan University) Discrete Mathematics April 2, 2013 7 / 20

Assignment and valuation If vi and v2 are two valuations that agree on the support of a, the finite set of propostional letters used in the construction of the proposition of the proposition a, then n(a)=2(a)
Assignment and Valuation . Corollary . . If V1 and V2 are two valuations that agree on the support of α, the finite set of propostional letters used in the construction of the proposition of the proposition α, then V1(α) = V2(α). Yi Li (Fudan University) Discrete Mathematics April 2, 2013 8 / 20

Tautology Definition A proposition o of propostional logic is said to be valid if for any valuation v, v(o)=T. Such a proposition is also called a tautology
Tautology . Definition . . A proposition σ of propostional logic is said to be valid if for any valuation V, V(σ) = T. Such a proposition is also called a tautology. Yi Li (Fudan University) Discrete Mathematics April 2, 2013 9 / 20

Tautology am e a V na is a tautology Solution: a-a aV -a
Tautology . Example . .α ∨ ¬α is a tautology. . Solution: . . α ¬α α ∨ ¬α T F T F T T Yi Li (Fudan University) Discrete Mathematics April 2, 2013 10 / 20
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》习题课讲义(李弋)05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)03.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)05 支配集、覆盖集、独立集、匹配与着色.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)04 平面图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)03 树(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)02 欧拉图与哈密顿图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)01 图的基本概念.pdf
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)28/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)27/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)26/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)25/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)24/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)23/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)22/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)21/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)20/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)19/28.ppt
- 复旦大学:《离散数学》习题课讲义(李弋)07 Tableau proof system.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)10 Limits of propositional logic Predicates and quantifiers Language of predicate logic.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)12 Structure Interpretation Truth Satisfiable Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)01 Lattice(I).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)02 Lattice(II).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)03 Introduction to Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)07 Tableau Proof System.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)11 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)12 Term, Formula and Formation Tree.pdf