复旦大学:《离散数学》习题课讲义(李弋)12 Structure Interpretation Truth Satisfiable Consequence

Discrete mathematics Software school Fudan University May28,2013
. . Discrete Mathematics Yi Li Software School Fudan University May 28, 2013 Yi Li (Fudan University) Discrete Mathematics May 28, 2013 1 / 27

Review o Predicates and quantifiers Language: Terms and Formulas o Formation Trees and structures
Review Predicates and Quantifiers Language: Terms and Formulas Formation Trees and Structures Yi Li (Fudan University) Discrete Mathematics May 28, 2013 2 / 27

utline Structure Interpretation o Truth o Satisfiable o Consequence
Outline Structure Interpretation Truth Satisfiable Consequence Yi Li (Fudan University) Discrete Mathematics May 28, 2013 3 / 27

Semantics: meaning and Truth o What is language? o What is the meaning of language?
Semantics: meaning and Truth What is language? What is the meaning of language? Yi Li (Fudan University) Discrete Mathematics May 28, 2013 4 / 27

Language finition(Language A language L consists of the following disjoint sets of distinct primitive symbols o Variables: x, y, Xo, x1, .. yo, y1, ...(an infinite set) O Constants: c, d, co, do, ...(any set of them) Connectives:∧,一,,→>,+ o Quantifiers:V,彐 o Predicate symbols: P, Q, R, P1, P2 O Function symbols: f, g, h, fo, fi O Punctuation, and),(
Language . Definition (Language) . . A language L consists of the following disjoint sets of distinct primitive symbols: 1. Variables: x, y, x0, x1, . . . , y0, y1, . . . (an infinite set) 2. Constants: c, d, c0, d0, . . . (any set of them). 3. Connectives: ∧,¬,∨, →,↔ 4. Quantifiers: ∀, ∃ 5. Predicate symbols: P, Q, R, P1, P2, . . . 6. Function symbols: f , g, h, f0, f1, . . . 7. Punctuation: , and ), ( Yi Li (Fudan University) Discrete Mathematics May 28, 2013 5 / 27

languange( Cont) am e Consider the language with one predicate P(x, y)and function f(x, y). We can view them as oNwith≤andf(x,y)=x·y. Q with <and f(x,y)=x:y o Z with and f(x,y)=x-y
Languange(Cont.) . Example . . Consider the language with one predicate P(x, y) and function f (x, y). We can view them as: 1. N with ≤ and f (x, y) = x · y. 2. Q with and f (x, y) = x − y. Yi Li (Fudan University) Discrete Mathematics May 28, 2013 6 / 27

St ructure amp dle Consider this sentence bobby' s father can beat up the father of any other kid on the block
Structure . Example . . Consider this sentence ”Bobby’s father can beat up the father of any other kid on the block”. . Solution . . Let 1. K(x): x is a child on the block and b means Bobby. 2. f (x): x’s father, 3. B(x, y): x can beat up y, 4. Finally, ∀x(K(x) → (¬(x = b) → B(f (b), f (x)))). Yi Li (Fudan University) Discrete Mathematics May 28, 2013 7 / 27

St ructure amp dle Consider this sentence bobby' s father can beat up the father of any other kid on the block Solution Let
Structure . Example . . Consider this sentence ”Bobby’s father can beat up the father of any other kid on the block”. . Solution . . Let 1. K(x): x is a child on the block and b means Bobby. 2. f (x): x’s father, 3. B(x, y): x can beat up y, 4. Finally, ∀x(K(x) → (¬(x = b) → B(f (b), f (x)))). Yi Li (Fudan University) Discrete Mathematics May 28, 2013 7 / 27

St ructure amp dle Consider this sentence bobby' s father can beat up the father of any other kid on the block Solution Let o K(x): x is a child on the block and b means Bobby
Structure . Example . . Consider this sentence ”Bobby’s father can beat up the father of any other kid on the block”. . Solution . . Let 1. K(x): x is a child on the block and b means Bobby. 2. f (x): x’s father, 3. B(x, y): x can beat up y, 4. Finally, ∀x(K(x) → (¬(x = b) → B(f (b), f (x)))). Yi Li (Fudan University) Discrete Mathematics May 28, 2013 7 / 27

St ructure amp dle Consider this sentence bobby' s father can beat up the father of any other kid on the block Solution Let O K(x): x is a child on the block and b means Bobby o f(x):xs father
Structure . Example . . Consider this sentence ”Bobby’s father can beat up the father of any other kid on the block”. . Solution . . Let 1. K(x): x is a child on the block and b means Bobby. 2. f (x): x’s father, 3. B(x, y): x can beat up y, 4. Finally, ∀x(K(x) → (¬(x = b) → B(f (b), f (x)))). Yi Li (Fudan University) Discrete Mathematics May 28, 2013 7 / 27
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《离散数学》习题课讲义(李弋)11 Terms Formuals Formation tree.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)10 Limits of propositional logic Predicates and quantifiers Language of predicate logic.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)09 Deduction from premises Compactness Applications.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)08 Syntax and semantics Soundness theorem Completeness theorem.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)07 Tableau proof system.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)06 Truth assignment Truth valuation Tautology Consequence.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)05 Formation tree Parsing algorithm.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)04 Propositions Truth table Adequacy.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)03.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)02 Special Lattices Boolean Algebra.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)01 Review of partial order set Review of abstract algebra Lattice and Sublattice.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)05 支配集、覆盖集、独立集、匹配与着色.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)04 平面图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)03 树(主讲:王智慧).pdf
- 复旦大学:《离散数学》课程教学讲义(图论)02 欧拉图与哈密顿图.pdf
- 复旦大学:《离散数学》课程教学讲义(图论)01 图的基本概念.pdf
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)28/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)27/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)26/28.ppt
- 复旦大学:《离散数学》PPT教学课件(赵一鸣)25/28.ppt
- 复旦大学:《离散数学》习题课讲义(李弋)13 Atomic tableaux Tableau proof Property of CST.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)14 Soundness Completeness Compactness.pdf
- 复旦大学:《离散数学》习题课讲义(李弋)15 Application of Logic Limitation of First Order Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)01 Lattice(I).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)02 Lattice(II).pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)03 Introduction to Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)04 Proposition, Connectives and Truth Tables.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)05 Formation Tree and Parsing Algorithm.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)06 Truth Assignments and Valuations.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)07 Tableau Proof System.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)08 Soundness and Completeness of Propositional Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)09 Deduction from Premises,Compactness, and Applications.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)11 Predicates and Quantifiers.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)12 Term, Formula and Formation Tree.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)13 Semantics of Predicated Language.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)14 Tableau Proof of Predicate Logic.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)15 Soundness, Completeness and Compactness.pdf
- 复旦大学:《离散数学》习题课讲稿(李弋)16 Application and Limitations.pdf
- 复旦大学:《线性代数 Linear Algebra》课程教学资源(习题解答与试题)第一章补充题目.pdf
- 复旦大学:《线性代数 Linear Algebra》课程教学资源(习题解答与试题)第一章部分重要题目的解答.pdf