《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Genes that are Universal to Life

Hypothesis: That lifeonMarswill be related to lifeon EarthWhy?AtthepointofmassivemeteoriticexchangebetweenMarsand Earth,life had already evolved to modern cellularforms andmetabolism.AndMarswasprobablywetterand warmer.How doesthishelp us look for life on Mars?1.alllifeonEarthisrelatedtoacommonancestor2. one particular gene, the 16S gene, has changed theleast overthepast3.5billionyearsandispresentinallknownlife3.anextremelysensitiveandspecificDNA-based lifedetectorthattargetsthisgeneisnowusedtoprospectfordiverselifeonEarth.4.if life on Mars sharesthat commonancestor,wecan detectitusingthis lifedetectiontechnology.Theinstrument:a 1.5 kg thermal cycling soil analysispackagethatamplifies andanalyzes the16SgeneinsituonMarsThe life signature: a DNA sequence with predictable features thatcannot be generated abiotically
Hypothesis: That life on Mars will be related to life on Earth Why? At the point of massive meteoritic exchange between Mars and Earth, life had already evolved to modern cellular forms and metabolism. And Mars was probably wetter and warmer. How does this help us look for life on Mars? 1. all life on Earth is related to a common ancestor 2. one particular gene, the 16S gene, has changed the least over the past 3.5 billion years and is present in all known life 3. an extremely sensitive and specific DNA-based life detector that targets this gene is now used to prospect for diverse life on Earth. 4. if life on Mars shares that common ancestor, we can detect it using this life detection technology. The instrument: a 1.5 kg thermal cycling soil analysis package that amplifies and analyzes the 16S gene in situ on Mars The life signature: a DNA sequence with predictable features that cannot be generated abiotically

There was already life on Earth during the period ofintense exchange with a warmer and wetter Marsfossilized bacterial3.5-forms3.63.7-3.8BombardmentPeriod:isotopicevidence3.9-1.106 to109Earth ejecta of.3to6meterforlifeonEarthnotheatedabove100°C4.02.Transittimes107yearsorless--survivalofmicrobespossible4.1-3.Arrive on awarm and wet Mars4.2-calculatedbyMileikowskyetal (lcarus145:391-427)4.3-4.4Lunarformation4.54.6Planetaryformationbillions of years ago
3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 billions of years ago Bombardment Period: 1. 106 to 109 Earth ejecta of .3 to 6 meter not heated above 100°C 2. Transit times 107 years or less-survival of microbes possible 3. Arrive on a warm and wet Mars calculated by Mileikowsky et al (Icarus 145: 391-427) There was already life on Earth during the period of intense exchange with a warmer and wetter Mars isotopic evidence for life on Earth fossilized bacterial forms Lunar formation Planetary formation

Launchand reentry:Possibleacceleration to escape velocity and deceleration from escapevelocity without majorheating:for a 1to 2o Km impactor,108lowtemperatureejectaOrbiting ejecta,at slightly lessthan escapevelocityarerefugia to microbes (but not dinosaurs) duringbombardmentperiodBlackbodytemperaturebetweenMarsandEarth130-200degK.Atmosphericentryof10sKm/secobjecttakesafewseconds.Transit:TransittimebetweenMarsandEarthlessthan10,000,000yearsfor5%6metersof rock can protect vs cosmicand solar radiationforhundredsofmillionsofyears
Launch and reentry: Possible acceleration to escape velocity and deceleration from escape velocity without major heating: for a 1 to 20 Km impactor, 108 low temperature ejecta Orbiting ejecta, at slightly less than escape velocity are refugia to microbes (but not dinosaurs) during bombardment period Black body temperature between Mars and Earth 130- 200 deg K. Atmospheric entry of 10s Km/sec object takes a few seconds. Transit: Transit time between Mars and Earth less than 10,000,000 years for 5% 6 meters of rock can protect vs cosmic and solar radiation for hundreds of millions of years

SurvivingonMars1.Waswarmer and wetter3.5 billionyears ago2.Marslostitsatmosphereas itsmagneticfielddecayedsothat3.Uvisnow1oo0xmoreintenseonMarsthanEarth4.Low UV is probably a recent invention on Earth,afterphotosynthesisevolved5.HighUvfluxmaybetheancestral stateinwhichlifeactuallyevolved6.HighUv isoxidizing,butoxidantssupply metabolic energyby acceptingelectronstransferredbytheelectrontransportchainAstrobiologists worrytoo muchabout UV....chill outdudes.Thekeyis whereisthe watertoday and how muchis needed for life.MicrobesinoasesshouldbedetectablebyPCRifviableorganismsblowaroundinthewind
Surviving on Mars 1. Was warmer and wetter 3.5 billion years ago 2. Mars lost its atmosphere as its magnetic field decayed so that 3. UV is now 1000x more intense on Mars than Earth 4. Low UV is probably a recent invention on Earth, after photosynthesis evolved 5. High UV flux may be the ancestral state in which life actually evolved 6. High UV is oxidizing, but oxidants supply metabolic energy by accepting electrons transferred by the electron transport chain Astrobiologists worry too much about UV.chill out dudes. The key is where is the water today and how much is needed for life. Microbes in oases should be detectable by PCR if viable organisms blow around in the wind

Some common features of life on EarthDNA,RNA,proteins(core=500)biochemistry1micron3ATPH+H+H+H2=2H++2e-orNADHH+H+ reductant,e.g.H2carbonoxidant(e.g cO2ors0)H+ H+source,e.g. c02
reductant, e.g. H2 carbon source, e.g. CO2 biochemistry DNA, RNA, proteins (core=500) ATP H+ H+ H+ H+ H+ H+ H+ H2= 2H+ + 2e-or NADH Some common features of life on Earth 1 micron3 oxidant (e.g CO2 or S0)

CO2InorganiccompoundProtonElectronCarbonATPflowmotiveflowforce+so02SO42-NO3Biosynthesis(b)Chemolithotrophicmetabolism

PeriplasmCellmembraneFe3+CellwallFe2+Out(pH2)RusticyaninH+H+H+cytccytaNAD+12e1/2022H+H20In (pH 6)ADPCO2+ATPATPNADHCalvincycle

Eo (M)CoupleExamplesofreactions-0.50withH,asedonorCO2/glucose(-0.43)24e2H+/H2(-0.42)2e0.40CO,/methanol(-0.38)6e0.30NAD+/NADH(-0.32)2e(1)(1) H2 + fumarate?-→ succinate?-0.20CO,/acetate(-0.28)8eAG%=-86kJS/HS(-0.28)2e0.10SO2-/HS(-0.22)8e0.0Pyruvate/lactate(-0.19)2e-S.O62-/SO32-(+0.024)2e+0.10Fumarate/succinate(+0.03)2e+0.20(2)(2) H2 + NO → NO2 + H,OCytochromeboxreg(+0.035)1e+0.30AG= -163kJFe3+/Fe2+(+0.2)1e,(pH7)Ubiquinoneox/red(+0.11)2e+0.40Cytochrome Cox/red (+0.25)1e+0.50Cytochromeaox/red (+0.39)1eNO3-/NO(+0.42)2e+0.60+0.70WNO3-/%N(+0.74)5e(3) H, + 2 02 →H,0(3)+0.80-Fe3+/Fe2+(+0.76)1e,(pH2)AG%=-237kJ0/H0(+0.82)2e+0.90

515Fisoneuniversal16Sprimer5'GTGCCAGCAG CCGCGGTAAT3'UNIVERSALH.SAPIGGCAAGTCTG GTGCCAGCAG CCGCGGTAAT TCCAGCTCCA ATAGCGTATA650ANIMAL615X.LAEVGGCAAGTCTGGTGCCAGCAG CCGCGGTAAT TCCAGCTCCA ATAGCGTATAS.CERV601FUNGALGGCAAGTCTG GTGCCAGCAG CCGCGGTAAT TCCAGCTCCA ATAGCGTATA601P.MICAGGCAAGTCTGGTGCCAGCAG CCGCGGTAAT TCCAGCTCCA ATAGCGTATADINOFLAZ.MAYS605PLANTGGCAAGTCTG GTGCCAGCAG CCGCGGTAAT TCCAGCTCCA ATAGCGTATAGIARDIGCAAGGTCTGGTGCCAGCAG CCGCGGTAAT TCCAGCTCGG CGAGCGTCGC481PROTOZO516D.MOBIGGCAAGTCTG GTGTCAGCCG CCGCGGTAAT ACCAGCCCCG CGAGTGGTCGARCHAEA513S.SOLFGGCAAGTCTGGTGTCAGCCG CCGCGGTAAT ACCAGCTCCGCGAGTGGTCG513GGTAAGTCTG GTGTCAGCCG CCGCGGTAAT ACCAGCCCCG CGAGTGGTCAT.TENX500E0CY89GGCAAGTCGG GTGTCAGCCGCCGCGGTAAT ACCCGCTCCC CGAGTGGTGG20EOCY78GGCAAGGCTG GTGGCAGCCG CCGCGGTAAA ACCAGCTCCC CGAGGGGTTCGGCAAGTCTG GTGTCAGCCG CCGCGGTAAT ACCAGCCCCG CGAGCGGTCGPYRODIMPYRUSGGCAAGACCG CTGCCAGCCG CCGCGGTAAT AGCGGCGCCG CAAGTGGTGGT.CELRGGCAAGGCCG GTGGCAGCCG CCGCGGTAAT ACCGGCGGCC CGAGTGGTGG507ARGLB.GGCAAGGCCG GTGGCAGCCG CCGCGGTAAT ACCGGCGGCCCGAGTGGCGG492T.ACIDGGCAAGACGG GTGCCAGCCG CCGCGGTAAC ACCCGCAGCT CGAGTGGTGA486M.VANNGGCAAGTTCGGTGCCAGCAGCCGCGGTAAT ACCGACGGCCCGAGTGGTAG805MB.FORGGCAAGACCGACCGGCAGCTCAAGTGGTGGGTGCCAGCCGCCGCGGTAACMS.HUNGGCAAGACCGGTGCCAGCCGCCGCGGTAAT ACCGGCGGCTCGAGTGGTGG488M.SOEHGGCAAGACCG GTGCCAGCCG CCGCGGTAAC ACCGGCGGCT CGAGTGGTAA492H.VOLCGGCAAGACCG GTGCCAGCCG CCGCGGTAAT ACCGGCAGCT CAAGTGATGA机HC.MORGGCAAGACCG GTGCCAGCCG CCGCGGTAAT ACCGGCAGCT CGAGTGATAGH.HALOGGCAAGACCG GTGCCAGCCG CCGCGGTAAT ACCGGCAGTC CGAGTGATGGH.CUTIGGCAAGACCG GTGCCAGCCG CCGCGGTAAT ACCGGCAGTC CGAGTGATGGT.MTMAGGCTAACTACGTGCCAGCAG CCGCGGTAAT ACNTAGGGGG CAAGCGTTACBACTTM.ROSGGCTAACTACGTGCCAGCAG CCGCGGTAAG ACGTAGGGGG CGAGCGTTACCFX.AUGGCTAACTCT GTGCCAGCAG CCGCGGTAAGACAGAGGGGG CNAGCGTTGTAN.NIDGGCTAATTCC GTGCCAGCAG CCGCGGTAAT ACGGGAGAGGCAAGCGTTATBC.SUBGGCTAACTACGTGCCAGCAGCCGCGGTAAT ACGTAGGTGGCAAGCGTTTTE.COLIGGCTAACTCC GTGCCAGCAG CCGCGGTAAT ACGGAGGGTG CAAGCGTTAAAG.TUMGGCTAACTTC GTGCCAGCAG CCGCGGTAAT ACGAAGGGGG CTAGCGTTGT501Z.MCHLGGCTAACTCTGTGCCAGCAG CCGCGGTAAG ACAGAGGATG CAAGCGTTATCHLOROP

[0-7{0-10][0-559][0-837][0-180]V4[0-2][0-196524(0-146)V8[0-310]10-1571505[0-10][0-15][0-410.2[0-10]Reference sequenceand structure: Escherichie coli1J01695)t.celulerorgarNovembe2001[3:245] 5Numeerotsequences:73550-25V9Positons with a nuclectide in rrore than 95% of the soguences are[0,11] [0-179]shown in one ot feur categories.ACGU -98+%conservedacgu-90.9% conoerved - 80-90% conserved10-1-lossthan80%conservedOtherwise, the segions are represented by arcsDArclsbeisindicntetheurperandlowernumbercfmuciechcoskenownto axistwithin theassociabodvariableregion.10-411Blue tags indicate insertions relafive to the reference stquenteIserions tmat aopear are:(1) longih 1-4 in more than 10% ot soguences(2) orgth 5 or greater in at ieast one sequence10-560withformat:(Max.Length ofirserton:Poroentageof socswinary iongih ineertion)Citatonandreiatedintormationavailsbleathttp:/wwwrnaicmb.utexas.edu
V9 V8 V4 524 1505
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Fighting Global Infectious Disease.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Evolution in Action-Learning from adapting populations of bacteria in lab.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)A Race Against Resistance.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Dancing in the Dark - Chemosynthesis and Symbiosios.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Antibiotics Current Challenges.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)An Ecological Approach to Microbes and Disease.pdf
- 《环境工程微生物学》课程PPT教学课件(英文讲稿)Chapter 04 原核微生物 A Survey of Prokaryotic Cells and Microorganisms.ppt
- 《环境工程微生物学》课程PPT教学课件(英文讲稿)Chapter 06 病毒 An Introduction to Viruses.ppt
- 《环境工程微生物学》课程PPT教学课件(英文讲稿)Chapter 07 微生物营养 Microbial Nutrition, Ecology, and Growth.ppt
- 《环境工程微生物学》课程PPT教学课件(英文讲稿)Chapter 08 微生物代谢 An Introduction to Microbial Metabolism.ppt
- 《环境工程微生物学》课程PPT教学课件(英文讲稿)Chapter 09 微生物遗传学 Microbial Genetics.ppt
- 《环境工程微生物学》课程PPT教学课件(英文讲稿)Chapter 10 基因工程 Genetic Engineering - A Revolution in Molecular Biology.ppt
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)引言(绪论).ppt
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)病毒.pdf
- 《环境工程微生物学》课程教学课件(环境微生物学,PPT讲稿)原核生物细菌(图片版).ppt
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)古生菌(古菌).pdf
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)真核(微)生物.pdf
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)微生物的酶.pdf
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)微生物的生理特性(微生物的营养).pdf
- 《环境工程微生物学》课程教学课件(环境微生物学,讲稿)微生物的生理特性(能量代谢).pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Life in a Microbial World-the ecology of microbes at hydrothermal vents.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Our Bugs R Us.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Stochasticity in the Bacterial World.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)The Face of Bacillus Subtilis - Genomes and Biofilms.pdf
- 《环境工程微生物学》课程扩展资料(scientist microbiology from Harvard)Understanding Resistance to Tuberculosis.pdf
- 《环境工程微生物学》课程教学资源(扩展资料)环境工程系统微生物 Microbiology of Environmental Engineering Systems.pdf
- 《环境工程微生物学》课程教学资源(英文教材)Foundations In Microbiology,8Th Edition(Kathleen Park Talaro)Mcgraw Hill 2012(彩色版).pdf
- 《环境工程微生物学》课程教学资源(微生物学教案)病毒(Virus).doc
- 《环境工程微生物学》课程教学资源(微生物学教案)微生物的新陈代谢.doc
- 《环境工程微生物学》课程教学资源(微生物学教案)微生物的遗传变异.doc
- 《环境工程微生物学》课程教学资源(微生物学教案)微生物遗传与变异(Heredity).doc
- 《环境工程微生物学》课程教学资源(微生物学教案)原核微生物 A survey of prokaryotic cells and microorganisms.doc
- 《环境工程微生物学》课程教学资源(微生物学教案)原核生物的形态、构造和功能.doc
- 《环境工程微生物学》课程教学资源(微生物学教案)微生物学绪论 The main themes of Microbiology.doc
- 《环境工程微生物学》课程教学资源(微生物学教案)微生物学 The main themes of Microbiology.doc
- 《环境工程微生物学》课程教学资源(微生物学教案)原核生物的形态、构造和功能.doc
- 《环境工程微生物学》课程教学课件(环境微生物学,PPT讲稿)污水的好氧生物处理(活性污泥法).pptx
- 《环境工程微生物学》课程教学资源(PPT课件)第一章 绪论.ppt
- 《环境工程微生物学》课程教学资源(PPT课件)第二章 原核生物第一节 细菌.ppt
- 《环境工程微生物学》课程教学资源(PPT课件)第二章 原核生物 第二节 放线菌 第三节 丝状细菌 第四节 光合细菌 第五节 蓝细菌.ppt
