复旦大学:《基因组学》课程教学资源(学习资料)高粱基因组计划

Nature:高梁基因组完成测序 2009年1月29日 本期 Nature发表了高粱( Sorghum bicolour)的基因组序列 高粱基因组美国科学家完成测序 美国能源部联合基因组研究所等机构的科学家日前完成了高粱的全基因组测序和分析,相关 研究成果已刊登在29日出版的《自然》杂志上 科学家利用全基因组鸟枪测序法完成了对高粱基因组的测序。结果显示,高粱基因组大约 有3万个基因,有7.3亿个核苷酸,比大米约多75%。科学家以及工业界人士认为,高 梁基因组测序的完成将促进该作物的改良,并有助于完成其他相关植物的测序工作 美国能源部生物和环境研究中心副主任安娜·帕尔米萨诺说,这项硏究是发展低成本、非粮 食生物燃料的重要一步。美国孟德尔生物技术公司总裁尼尔·格特森则认为,这项成果将对 生物燃料和可再生能源产业产生重要影响。 由于耐寒且生产生物燃料的效率髙,高粱目前是美国仅次于玉米的第二大生物燃料作物。此 外,随着利用植物纤维生产乙醇的技术日趋成熟,高粱生长迅速的特点更让其成为理想的生 物燃料来源 高粱是一种谷物,作为粮食、饲料、纤维和燃料作物广泛种植。它耐热、耐旱,是西非萨赫 勒地区很多人口的一种主食作物。将该基因组与玉米和水稻的基因组所做的对比,为了解草 本及C4植物光合作用(这种光合作用在高温时尤其能够高效吸收碳)的演化提供了线索 另外,可能对高粱的抗旱性能有贡献的蛋白编码基因及 miRNAs也可能被找到。高粱产量 的提高一直落后于其他作物,其基因组序列的获得有可能为该作物的改良产生非常重要的促 进作用。(生物谷 Bioon. com) 高粱是全球第五大禾谷类作物在干旱、半于旱地区农业生产中占有极其重要的位置高粱基 因组相对较小(750Mbp,遗传多样性丰富,被认为是禾谷类作物比较基因组学研究的模式基 因组之一近年来综合运用AFLP等分子标记、BAC文库、EST及cDNA作图和FISH技术 加速了高粱高分辨率基因组图谱的构建高粱基因测序、基因功能鉴定和克隆以及遗传转化, 亦取得了长足的进展高梁特有的多种适应逆境胁迫等优异基因资源的发掘及其在作物改良 中的应用前景广阔
Nature:高粱基因组完成测序 2009 年 1 月 29 日 本期 Nature 发表了高粱(Sorghum bicolour)的基因组序列。 高粱基因组-美国科学家完成测序 美国能源部联合基因组研究所等机构的科学家日前完成了高粱的全基因组测序和分析,相关 研究成果已刊登在29日出版的《自然》杂志上。 科学家利用全基因组鸟枪测序法完成了对高粱基因组的测序。结果显示,高粱基因组大约 有3万个基因,有7.3亿个核苷酸,比大米约多75%。科学家以及工业界人士认为,高 粱基因组测序的完成将促进该作物的改良,并有助于完成其他相关植物的测序工作。 美国能源部生物和环境研究中心副主任安娜·帕尔米萨诺说,这项研究是发展低成本、非粮 食生物燃料的重要一步。美国孟德尔生物技术公司总裁尼尔·格特森则认为,这项成果将对 生物燃料和可再生能源产业产生重要影响。 由于耐寒且生产生物燃料的效率高,高粱目前是美国仅次于玉米的第二大生物燃料作物。此 外,随着利用植物纤维生产乙醇的技术日趋成熟,高粱生长迅速的特点更让其成为理想的生 物燃料来源。 高粱是一种谷物,作为粮食、饲料、纤维和燃料作物广泛种植。它耐热、耐旱,是西非萨赫 勒地区很多人口的一种主食作物。将该基因组与玉米和水稻的基因组所做的对比,为了解草 本及 C4 植物光合作用(这种光合作用在高温时尤其能够高效吸收碳)的演化提供了线索。 另外,可能对高粱的抗旱性能有贡献的蛋白编码基因及 miRNAs 也可能被找到。高粱产量 的提高一直落后于其他作物,其基因组序列的获得有可能为该作物的改良产生非常重要的促 进作用。(生物谷 Bioon.com) 高粱是全球第五大禾谷类作物,在干旱、半干旱地区农业生产中占有极其重要的位置.高粱基 因组相对较小(750Mbp),遗传多样性丰富,被认为是禾谷类作物比较基因组学研究的模式基 因组之一.近年来,综合运用 AFLP 等分子标记、BAC 文库、EST 及 cDNA 作图和 FISH 技术, 加速了高粱高分辨率基因组图谱的构建.高粱基因测序、基因功能鉴定和克隆,以及遗传转化, 亦取得了长足的进展.高粱特有的多种适应逆境胁迫等优异基因资源的发掘及其在作物改良 中的应用前景广阔

高粱基因组序列的获得 分了帕牧 高粱基因组 高粱是一种谷物,作为粮食、饲料、纤维和燃料作物广泛种植。它耐热、耐旱,是西非萨赫 勒地区很多人口的一种主食作物。将该基因组与玉米和水稻的基因组所做的对比,为了解草 本及α4植物光合作用(这种光合作用在高温时尤其能够高效吸收碳)的演化提供了线索。 另外,可能对高粱的抗旱性能有贡献的蛋白编码基因及 miRnAs也可能被找到。高粱产量 的提高一直落后于其他作物,其基因组序列的获得有可能为该作物的改良产生非常重要的促 进作用。 生物谷推荐原始出处: Nature 457, 551-556(29 January 2009) doi: 10. 1038/nature07723 he Sorghum bicolor genome and the diversification of grasses Andrew H. Patersonl, John E. Bowersl, Remy Bruggmann2, Inna Dubchak3, Jane Grimwood Heidrun Gundlach5, Georg Haberer5, Uffe Hellsten3, Therese Mitros6, Alexander Poliakov3 Jeremy Schmutz, Manuel Spannagl5, Haibao Tangl, Xiyin Wangl, 7, Thomas Wicker&, Arvind K Bharti2, Jarrod Chapman3, F. Alex Feltusl, 9, Udo Gowik10, Igor V. Grigoriev3, Eric Lyonsl Christopher A. Maher 12, Mihaela Martis5, Apurva Narechanial2, Robert P. Otillar 3, Bryan W Penning 13, Asaf A. Salamov3, Yu Wangs, Lifang Zhang 12, Nicholas C. Carpital 4, Michael Freeling ll, Alan R. Ginglel, C. Thomas Hash15, Beat Keller8, Patricia Klein16, Stephen KresovichI7, Maureen C. McCann13, Ray Ming 18, Daniel G. Peterson1, 19, Mehboob-ur-Rahman1, 20, Doreen Ware12, 21, Peter Westhoff10, Klaus F. X. Mayer5, Joachim Messing Daniel S. Rokhsar3, 4 I Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA 2 Waksman Institute for Microbiology, Rutgers University, Piscataway, New Jersey 08854, USA 3 DOE Joint Genome Institute. Walnut Creek. California 94598. USA 4 Stanford Human Genome Center, Stanford University, Palo Alto, California 94304, USA 5 MIPS/IBIS, Helmholtz Zentrum Munchen, Inglostaedter Landstrasse 1, 85764 Neuherberg Germany 6 Center for Integrative Genomics, University of California, Berkeley, California 94720, USA
高粱基因组-序列的获得 高粱基因组 高粱是一种谷物,作为粮食、饲料、纤维和燃料作物广泛种植。它耐热、耐旱,是西非萨赫 勒地区很多人口的一种主食作物。将该基因组与玉米和水稻的基因组所做的对比,为了解草 本及 C4 植物光合作用(这种光合作用在高温时尤其能够高效吸收碳)的演化提供了线索。 另外,可能对高粱的抗旱性能有贡献的蛋白编码基因及 miRNAs 也可能被找到。高粱产量 的提高一直落后于其他作物,其基因组序列的获得有可能为该作物的改良产生非常重要的促 进作用。 生物谷推荐原始出处: Nature 457, 551-556 (29 January 2009) | doi:10.1038/nature07723; The Sorghum bicolor genome and the diversification of grasses Andrew H. Paterson1, John E. Bowers1, Rémy Bruggmann2, Inna Dubchak3, Jane Grimwood4, Heidrun Gundlach5, Georg Haberer5, Uffe Hellsten3, Therese Mitros6, Alexander Poliakov3, Jeremy Schmutz4, Manuel Spannagl5, Haibao Tang1, Xiyin Wang1,7, Thomas Wicker8, Arvind K. Bharti2, Jarrod Chapman3, F. Alex Feltus1,9, Udo Gowik10, Igor V. Grigoriev3, Eric Lyons11, Christopher A. Maher12, Mihaela Martis5, Apurva Narechania12, Robert P. Otillar3, Bryan W. Penning13, Asaf A. Salamov3, Yu Wang5, Lifang Zhang12, Nicholas C. Carpita14, Michael Freeling11, Alan R. Gingle1, C. Thomas Hash15, Beat Keller8, Patricia Klein16, Stephen Kresovich17, Maureen C. McCann13, Ray Ming18, Daniel G. Peterson1,19, Mehboob-ur-Rahman1,20, Doreen Ware12,21, Peter Westhoff10, Klaus F. X. Mayer5, Joachim Messing2 & Daniel S. Rokhsar3,4 1 Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA 2 Waksman Institute for Microbiology, Rutgers University, Piscataway, New Jersey 08854, USA 3 DOE Joint Genome Institute, Walnut Creek, California 94598, USA 4 Stanford Human Genome Center, Stanford University, Palo Alto, California 94304, USA 5 MIPS/IBIS, Helmholtz Zentrum München, Inglostaedter Landstrasse 1, 85764 Neuherberg, Germany 6 Center for Integrative Genomics, University of California, Berkeley, California 94720, USA

7 College of Sciences, Hebei Polytechnic University, Tangshan, Hebei 063000, China 8 Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland 9 Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631 USA 0 Institut fur Entwicklung und Molekularbiologie der Pflanzen, Heinrich-Heine-Universitat Universitatsstrasse 1, D-40225 Dusseldorf, Germany 11 Department of Plant and Microbial Biology, University of California Berkeley, Califo 94720.USA 12 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA 13 Department of Biological Sciences, 14 Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 USA 15 International Crops Research Institute for the Semi-Arid Tropics(ICRISAT), Patancheru 502 324. India 16 Department of Horticulture and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA 17 Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA 18 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA 19 Mississippi Genome Exploration Laboratory, Mississippi State University, Starkville, Mississippi 39762, USA 20 National Institute for Biotechnology Genetic Engineering(NIBGE), Faisalabad, Pakistan 21 USDANAA Robert Holley Center for Agriculture and Health, Ithaca, New York 14853, USA Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel We present an initial analysis of the 730-megabase Sorghum bicolor(L ) Moench genome, placing 98%of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghums drought tolerance
7 College of Sciences, Hebei Polytechnic University, Tangshan, Hebei 063000, China 8 Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland 9 Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631, USA 10 Institut fur Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universitat, Universitatsstrasse 1, D-40225 Dusseldorf, Germany 11 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA 12 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA 13 Department of Biological Sciences, 14 Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA 15 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India 16 Department of Horticulture and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA 17 Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA 18 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA 19 Mississippi Genome Exploration Laboratory, Mississippi State University, Starkville, Mississippi 39762, USA 20 National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan 21 USDA NAA Robert Holley Center for Agriculture and Health, Ithaca, New York 14853, USA Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the 730-megabase Sorghum bicolor (L.) Moench genome, placing 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization 70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《基因组学》课程教学资源(学习资料)大豆基因组测序完成.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)2007年完成基因组测序的生物.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)Genome Project History(2011).ppt
- 复旦大学:《基因组学》课程教学资源(学习资料)基因组结构的进化.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)基因注解网站.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)简述miRNA及其在动植物中的差异.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)科学家绘制出最清晰立体人类基因组结构图.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)美国提出基因测序数据分类新标准.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)人类基因组范围转录异构变异——表达水平多样性.pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)系统生物学综述.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)遗传学词典.doc
- 张勘上海市卫生局:病原微生物实验室生物安全管控的实践探索与未来挑战(张勘).pdf
- 复旦大学:《医学与生物安全》课程教学资源(讲稿)实验室生物安全基本概念与危险因子(叶荣).pdf
- 《医学与生物安全》课程教学资源:生物安全监督执法——强化世博会实验室生物安全保障培训(上海市卫生局监督所:顾小平).pdf
- 复旦大学:《医学与生物安全》课程教学资源(讲稿)生物安全 Bio-safety瞿涤人为生物危险(生物战剂、生物恐怖、防御突发事件的应对).pdf
- 复旦大学:《医学与生物安全》课程教学资源(讲稿)实验室生物安全基础——生物安全实验室的个人防护、消毒灭菌、废弃物处理(孙志平).pdf
- 复旦大学:《医学与生物安全》课程教学资源(讲稿)实验室管理——菌毒种保藏与运输(丁悦娜).pdf
- 复旦大学:《医学与生物安全》课程教学资源(讲稿)生物安全实验室设施——防护设施、空气净化与负压体系、生物安全柜(韩文东).pdf
- 复旦大学:《医学与生物安全》课程教学资源(见实习方案,WORD版).doc
- 复旦大学:《医学与生物安全》课程教学资源(见习实习方案).pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)国际研究小组完成木薯基因组图谱.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)科学家计划绘制香蕉基因组图谱.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)美科学家绘出玉米基因组草图.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)拟南芥基因组.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)葡萄基因组测定完成.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)世界千人测序计划.pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)烟草基因组计划.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)杨树全基因组测序.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)玉米基因组.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)植物基因组.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)植物基因组计划.doc
- 复旦大学:《基因组学》课程教学资源(学习资料)基因组加倍与物种形成.pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)全基因组加倍的意义.pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)密码优化 Genome Research 2010.pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)顺式元件与反式因子的共进化 Genome Research 2010.pdf
- 复旦大学:《基因组学》课程教学资源(学习资料)新基因的起源与表型创新 Genome Research 2010.pdf
- 复旦大学:《基因组学》课程教学资源(课件讲稿)第00章 基因组学导论(主讲:杨金水、罗小金).pdf
- 复旦大学:《基因组学》课程教学资源(课件讲稿)第01章 基因组(遗传的分子基础、基因组顺序复杂性、基因与基因家族、基因组).pdf
- 复旦大学:《基因组学》课程教学资源(课件讲稿)第02章 遗传图绘制.pdf
- 复旦大学:《基因组学》课程教学资源(课件讲稿)第03章 物理图绘制.pdf