上海交通大学:《计量经济学》教学资源_教学资料_Multiple Regression Analysis

Multiple Regression Analysis ◆y=B,+Bx1+Bx2+.·Bxk+u ◆Inference Econometrics 15-Zhuxi@SJTU 1
Econometrics 15 - Zhuxi@SJTU 1 Multiple Regression Analysis y = b0 + b1 x1 + b2 x2 + . . . bk xk + u Inference

Gauss-Markov assumptions A1.Population model is linear in parameters: y=Bo+Bx+B2x2+...+Bxk+u A2.We can use a random sample of size n, {...,)i=1,2,...n},from the population model ◆A3.E(ulx,x2…xx)=0,implying that all of the explanatory variables are exogenous Econometrics 15-Zhuxi@SJTU 2
Econometrics 15 - Zhuxi@SJTU 2 Gauss-Markov Assumptions A1. Population model is linear in parameters: y = b0 + b1 x1 + b2 x2 +…+ bk xk + u A2. We can use a random sample of size n, {(xi1, xi2,…, xik, yi ): i=1, 2, …, n}, from the population model A3. E(u|x1 , x2 ,… xk ) = 0, implying that all of the explanatory variables are exogenous

Gauss-Markov Assumptions(cont.) A4.None of the x's is constant,and there are no exact linear relationships among them A5.Assume Var(ux ,x2.....x)=o (Homoskedasticity) Given A1-A5,OLS estimator is BLUE B=(XX)XY Econometrics 15-Zhuxi@SJTU 3
Econometrics 15 - Zhuxi@SJTU 3 Gauss-Markov Assumptions(cont.) A4. None of the x’s is constant, and there are no exact linear relationships among them A5. Assume Var(u|x1 , x2 ,…, xk ) = s2 (Homoskedasticity) Given A1-A5, OLS estimator is BLUE. 1 b ˆ X X X Y

3.1 Sampling distribution of OLS estimator So far,we know that given the Gauss- Markov assumptions,OLS is BLUE, In order to do classical hypothesis testing, we need to add another assumption(beyond the Gauss-Markov assumptions) A6.Assume that conditional on X,u is normally distributed with zero mean and variance o2:uX~Normal(0,o21) Econometrics 15-Zhuxi@SJTU 4
Econometrics 15 - Zhuxi@SJTU 4 3.1 Sampling distribution of OLS estimator So far, we know that given the GaussMarkov assumptions, OLS is BLUE, In order to do classical hypothesis testing, we need to add another assumption (beyond the Gauss-Markov assumptions) A6. Assume that conditional on X, u is normally distributed with zero mean and variance s2 : u|X ~ Normal(0,s2 I)

Classical Linear Model Assumptions Under CLM,OLS is not only BLUE,but also the minimum variance unbiased estimator ◆ We can summarize the population assumptions of CLM(A6)as follows yx Normal(Bo+Bx+...+Bo) While for now we just assume normality,clear that sometimes not the case Large samples will let us drop normality Econometrics 15-Zhuxi@SJTU 5
Econometrics 15 - Zhuxi@SJTU 5 Classical Linear Model Assumptions Under CLM, OLS is not only BLUE, but also the minimum variance unbiased estimator We can summarize the population assumptions of CLM (A6) as follows y|x ~ Normal(b0 + b1 x1 +…+ bk xk , s2 ) While for now we just assume normality, clear that sometimes not the case Large samples will let us drop normality

The homoskedastic normal distribution with a single explanatory variable y ↑fyx) E(ylx)=Bo+Bx {Normal distributions 1 X2 Econometrics 15-Zhuxi@SJTU 6
Econometrics 15 - Zhuxi@SJTU 6 . . x1 x2 The homoskedastic normal distribution with a single explanatory variable E(y|x) = b0 + b1 x y f(y|x) Normal distributions

Normal Sampling Distributions Theorem (normal sampling distribution): Under the CLM assumptions, 月1x~N[B,ar(a小 so that (B-e,)/sd(B,)1X~N(o,) -周s B is distributed normally because it is a linear combination of the errors Econometrics 15-Zhuxi@SJTU 7
Econometrics 15 - Zhuxi@SJTU 7 Normal Sampling Distributions 2 2 2 j Theorem (normal sampling distribution): Under the CLM assumptions, ˆ ˆ | ~ , , so that ˆ ˆ | ~ 0,1 . ˆ . 1 ˆ is distributed normally because it is a linear combination of j j j j j j j j j X N Var sd X N sd R SST b b b b b b s b b the errors

Normal Sampling Distribution Proof: B=(XX)XY=B°+(XX)Xu =B°+Cu=B+∑Ca4, By assumption A6,we have N(,2) and u,4,u..is mutually independent, thus we have B-B°1X0N(0,o2(XX)) Econometrics 15-Zhuxi@SJTU 8
Econometrics 15 - Zhuxi@SJTU 8 Normal Sampling Distribution 1 1 0 0 0 2 1 2 3 1 0 2 Proof: ˆ . By assumption A6, we have | 0, , and , , ... is mutually independent, thus we have ˆ | 0, . ki i i i X X X Y X X X u C u C u u X N u u u X N X X b b b b s b b s

Two Types of Errors H:0=0 H:0≠0,or0>0,or0<0 Type I error:=P(Reject HoHo holds) Type II error:B=P(Accept Ho|H holds) Conventionally,there are trade-off between them, we control a for a test(significance level). and then try to minimize B. Econometrics 15-Zhuxi@SJTU 9
Econometrics 15 - Zhuxi@SJTU 9 Two Types of Errors 0 1 0 0 0 1 : 0 : 0, or 0, or 0 Type I error: = P Reject H | H holds Type II error: = P Accept H | H holds Conventionally, there are trade-off between them, we control for a test(significance level) H H b , and then try to minimize . b

3.2 The t Test Under the CLM assumptions (B-p,)/ e(a)- Note this is a t distribution (vs normal) because we have to estimate oby 2: j (-R)Ss7, Note the degrees of freedom:n-k-1 Econometrics 15-Zhuxi@SJTU 10
Econometrics 15 - Zhuxi@SJTU 10 3.2 The t Test j 1 2 2 2 2 2 Under the CLM assumptions ˆ ~ ˆ Note this is a distribution (vs normal) because we have to estimate by : ˆ ˆ ˆ . 1 Note the degrees of freedom: 1 j n k j j j j t se t se R SST n k b b b s s s b
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《计量经济学》教学资源_教学资料_Regression Analysis.pdf
- 上海交通大学:《计量经济学》教学资源_教学资料_Econometrics Introduction.pdf
- 《政府与市场》课程教学资源(阅读材料)政府为什么干预经济——政府在市场经济中的角色.pdf
- 《政府与市场》课程教学资源(阅读材料)亚当·斯密《国富论》(国民财富的性质和原因的研究).pdf
- 上海交通大学:《宏观经济学(通选)》课程教学资源_第9篇 长期中的实际经济 第27章 基本金融工具 The Basic Tools of Finance.pdf
- 上海交通大学:《宏观经济学(通选)》课程教学资源_第9篇 长期中的实际经济 第26章 储蓄、投资与金融体系 Saving, Investment, and the Financial System.pdf
- 上海交通大学:《宏观经济学(通选)》课程教学资源_第9篇 长期中的实际经济 第25章 生产与经济增长 Production and Growth.pdf
- 上海交通大学:《宏观经济学(通选)》课程教学资源_第24章 衡量生活成本 Measuring the Cost of Living.pdf
- 上海交通大学:《宏观经济学(通选)》课程教学资源_第23章 衡量一国收入 Measuring a Nation’s Income.pdf
- 上海交通大学:《宏观经济学(通选)》课程教学资源_一般均衡存在性证明.pdf
- 《国际金融 International Finance》课程教学资料:National Income Accounting and the Balance of Payments.ppt
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第四讲 投资方案经济效果评价指标(一).pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第十讲 工程项目投资的盈利性和清偿能力分析(1).pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第十四讲 不确定分析与风险分析.pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第十五讲 价值工程.pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第十二讲 设备更新与租赁决策.pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第十三讲 公共项目的经济分析.pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第十一讲 工程项目投资的盈利性和清偿能力分析.pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第六讲 互斥方案的比选方法.pdf
- 上海交通大学:《工程经济学 Engineering Economics》课程教学资源_第八讲 折旧、利润与所得税(1).pdf
- 上海交通大学:《计量经济学》教学资源_教学资料_syllabus.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)上海市民众“看病难、看病贵”程度评估、内在机理分析和对策.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(PPT讲稿)上海市民众“看病难、看病贵”程度评估、内在机理分析和对策.ppt
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)分级诊疗建设案例分享.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(参考资料)世界银行:Deepening Health Reform In China Building High-Quality And Value-Based Service Delivery.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(参考资料)我所经历的三明医改.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(参考资料)深化中国医药卫生体制改革(建设基于价值的优质服务提供体系——政策总论)deepening health reform in china in Chinese version.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(参考资料)People-centred integrated care in urban China.pdf
- 《中国医疗保险制度的转型发展与创新》课程教学资源(参考资料)The Luohu Model:A Template for Integrated Urban Healthcare Systems in China.pdf
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)经济体制等转型&中国医保制度转型发展分析(黄丞).pdf
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(PPT讲稿)课程简介、经济体制等转型&中国医保制度转型发展分析.ppt
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)医疗保险的内涵界定和国际典型发展模式(国家(政府)医疗保险模式).pdf
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(PPT讲稿)医疗保险的内涵界定和国际典型发展模式(国家(政府)医疗保险模式).ppt
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)中国医疗保险制度的转型发展与创新(社会医疗保险模式).pdf
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(PPT讲稿)中国医疗保险制度的转型发展与创新(社会医疗保险模式).ppt
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)中国医疗保险制度的转型发展与创新(商业医疗保险模式).pdf
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(PPT讲稿)中国医疗保险制度的转型发展与创新(商业医疗保险模式).ppt
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)中国医疗保险制度的转型发展与创新(储蓄医疗保险模式).pdf
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(PPT讲稿)中国医疗保险制度的转型发展与创新(储蓄医疗保险模式).ppt
- 上海交通大学:《中国医疗保险制度的转型发展与创新》课程教学资源(讲稿)我国医疗保险制度的演化、改革及存在问题分析(1/2).pdf