《数字电》英文版 chapter2 Boolean switching algebra

Boolean switching algebra B 布尔开关代数 Chapter 2 Basic concept Binary logic function
Boolean switching algebra 布尔开关代数 Chapter 2 Basic concept & Binary logic function

Basic Cancer R Boolean algebra(Logic algebra) is a closure mathematical system that defines a series of logic operation (and, or, not) performed on set k of variables(a, b, c.) which can only have two values of o or o Notated as L=你k,+,°-0,1} Closure(封闭) A set is closed with respect to a operator if, the operation is applied to members of the set, the result is also a member of the set
Basic Concept Boolean algebra (Logic algebra) is a closure mathematical system that defines a series of logic operation (and, or, not) performed on set k of variables (a, b, c …) which can only have two values of 0 or 1. Notated as L={k, +, •, -, 0, 1} Closure(封闭) A set is closed with respect to a operator if, the operation is applied to members of the set, the result is also a member of the set

Basic Concept Commutative properties(交换律) A+B=B+A: AB=BA Associative properties(结合律) (AB) C=A(B C):(A+B)+C=A+(B+C Distributive properties(分配率) A·(B+C)=AB+AC:A+B·C=(A+B)(A+C Complement properties(互补律) A·A'=0;A+A=1 K Identity properties (0-14) A+0=A;A-1=A;A+1=1:A0=0 idempotency property(等幂律) A+A=A:A·A=A Absorption property(吸收律) A+AB=A: A (A+B)=A
Basic Concept Commutative properties (交换律) A+B=B+A ; AB=BA Associative properties (结合律) (A•B)•C=A•(B•C) ; (A+B)+C=A+(B+C) Distributive properties(分配率) A•(B+C)=A•B+A•C ; A+B•C=(A+B)•(A+C) Complement properties(互补律) A•A’=0 ; A+A’=1 Identity properties (0-1 律) A+0=A ; A•1=A ; A+1=1 ; A•0=0 Idempotency property (等幂律) A+A=A ; A•A=A Absorption property(吸收律) A+A•B=A ; A•(A+B)=A

Basic avert R Duality property o Duals are opposites or mirror images of original operators or constants w Operator and dual or w Operator or dual and 2 Constant 1 dual O 2 Constant 0 dual 1
Basic Concept Duality property Duals are opposites or mirror images of original operators or constants. Operator and dual or Operator or dual and Constant 1 dual 0 Constant 0 dual 1

Basic Cancer R Some more important Boolean identities and theorems for convenient referral 2 A+AB=A+B, A(A'+B)=AB 顶A"=A D(A+B)=A'B':(AB)=A'+B a Demorgan's theorems 圆(A1+A2+…+A1+An)=A1'A2…A….An 0(A1A2…A1…An)=A1+A2+…+A1+.+An R AB+AB=A:(A+B)(A+B)=A o AB+A'C+BC=AB+A'C (A+B)(A+C)(B+C)=(A+B)(A+C)
Basic Concept Some more important Boolean identities and theorems for convenient referral A+A’B=A+B ; A(A’+B)=AB A’’=A; (A+B)’=A’B’ ; (AB)’=A’+B’ Demorgan’s theorems (A1+A2+…+Ai…+An )’= A1 ’•A2 ’•…•Ai ’•…•An ’ ( A1 •A2 •…•Ai •…•An )’ =A1 ’+A2 ’+…+Ai ’+…+An ’ AB+AB’=A ; (A+B)(A+B’)=A AB+A’C+BC=AB+A’C ; (A+B)(A’+C)(B+C)=(A+B)(A’+C)

Basic Cancer R A+AB=A+B R A+AB =A1+A'B (Identity) =A(1+B)+AB (Identity) =A1+AB+A'B (Distributive =A+B(A+A) (Distributive) =A+B1 (identity) =A+B
Basic Concept A+A’B=A+B A+A’B =A1+A’B (Identity) =A(1+B)+A’B (Identity) =A1+AB+A’B (Distributive) =A+B(A’+A) (Distributive) =A+B1 (identity) =A+B

Basic avert R AB+A'C+BC=AB+A'C R AB+A'C+BC =AB+A'C+BC(A+A) = AB+ABC+A'C+A'CB =AB(1+C)+AC(1+B) =AB1+A'C1 =AB+A'C
Basic Concept AB+A’C+BC=AB+A’C ; AB+A’C+BC =AB+A’C+BC(A+A’) =AB+ABC+A’C+A’CB =AB(1+C)+A’C(1+B) =AB1+A’C1 =AB+A’C

Basic Cancer & I Substitute theorems If replacing all variable A in a logic equation with a logic function F, the equation would keep in equivalent F1(a1, a2.am)=F2(a1, a2.am) substitute f(x1.xn) for ai: F1(a1, a2..f,am) F2(a1a2…,f,am Ex。A(B+C)=AB+AC R substitute A+D for A (A+D)(B+C=(A+D)B+(A+D)C
Basic Concept Substitute theorems If replacing all variable A in a logic equation with a logic function F ,the equation would keep in equivalent. F1(a1,a2……am)= F2(a1,a2……am) substitute f(x1…xn) for ai: F1(a1,a2…,f,…am)= F2(a1,a2…,f,…am) Ex . A(B+C)=AB+AC substitute A+D for A: (A+D)(B+C)=(A+D)B+(A+D)C

Basic Cancer 工 nverse theorems The complement of any switching function can be found by replacing every variable with its complement, each And with Or, and each Or with Andi constants are replaced by their complement o is replaced by 1 and 1 by O); the original logic operation order should be retained F=G: F=G EXF≡AB+AC F=AB+AC R Demorgan's theorems Inverse theorems F=(AB+AC)=(AB)(AC) F’=A+BA+C? (A+B)(A+C) F=(A+B)(A'+C)
Basic Concept Inverse theorems The complement of any switching function can be found by replacing every variable with its complement, each And with Or, and each Or with And; constants are replaced by their complement (0 is replaced by 1 and 1 by 0) ;the original logic operation order should be retained. F=G ; F’=G’ Ex. F=AB+AC Demorgan’s theorems F’=(AB+AC)’=(AB)’(AC)’ =(A’+B’)•(A’+C’) Ex. F=AB+AC Inverse theorems: F’=A’+B’•A’+C’ ? F’=(A’+B’)•(A’+C’)

Basic Cancer Dual theorems The dual of any switching function can be found by replacing each And with Or, and each Or with And: constants are replaced by their complement (0 is replaced by 1 and 1 by O), and the logic operation order should hold in original R F=G: Fd=Gd EX F=AB+AC Fd=(A+ B)(A+C)
Basic Concept Dual theorems The dual of any switching function can be found by replacing each And with Or, and each Or with And; constants are replaced by their complement (0 is replaced by 1 and 1 by 0) ;and the logic operation order should hold in original. F=G; Fd=Gd Ex. F=AB+AC Fd=(A+B)•(A+C)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数字电》英文版 chapter2-2 Boolean switching algebra.ppt
- 《数字电》英文版 chapter2-1 Boolean switching algebra.ppt
- 《数字电》英文版 chapter1 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-3 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-2 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-1 Digital concept and Number system.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第九章 集成直流稳压电源.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第八章 功率放次电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第七章 波形发生电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第六章 集成电路运算放大器的线性运用.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第五章 反馈.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第四章 放大电路的频率响应.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第三章 多级放大电路和集成电路运算放大器.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第一章 半导体管件.ppt
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验6.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验5.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验4.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验3.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验2.doc
- 《数字电》英文版 chapter3-1 Combinational logic Circuits.ppt
- 《数字电》英文版 chapter3-2 Combinational logic Circuits.ppt
- 《数字电》英文版 chapter3.ppt
- 《数字电》英文版 chapter4-1 Flip-flops.ppt
- 《数字电》英文版 chapter4-2 Flip-flops.ppt
- 《数字电》英文版 chapter4-3 Flip-flops.ppt
- 《数字电》英文版 chapter4-5 Flip-flops.ppt
- 《数字电》英文版 chapter4 Flip-flops.ppt
- 《数字电》英文版 chapter5-1-1 Synchronous Sequential Circuit.ppt
- 《数字电》英文版 chapter5 Synchronous Sequential Circuit.ppt
- 电子技术:《模拟电路与数字电路》课程电子教案(PPT课件讲稿,数字电路)第一章 数字电路基础.ppt
- 电子技术:《模拟电路与数字电路》课程电子教案(PPT课件讲稿,数字电路)第二章 门电路.ppt
- 电子技术:《模拟电路与数字电路》课程电子教案(PPT课件讲稿,数字电路)第三章 组合逻辑电路.ppt
- 电子技术:《模拟电路与数字电路》课程电子教案(PPT课件讲稿,数字电路)第四章 触发器.ppt
- 电子技术:《模拟电路与数字电路》课程电子教案(PPT课件讲稿,数字电路)第五章 时序逻辑电路.ppt
- 清华大学:《信号与系统》课程教学资源(PPT课件讲稿)绪论(叶大田).ppt
- 清华大学:《信号与系统》课程教学资源(PPT课件讲稿)第一章 信号与系统概论(1.2)基本典型信号.ppt
- 清华大学:《信号与系统》课程教学资源(PPT课件讲稿)第三章 傅里叶变换 §3.7 傅立叶变换的基本性质.ppt
- 清华大学:《信号与系统》课程教学资源(PPT课件讲稿)第三章 傅里叶变换 §3.8 时域 卷积定理 §3.9 周期信号的傅立叶变换.ppt
- 清华大学:《信号与系统》课程教学资源(PPT课件讲稿)第三章 傅里叶变换 §3.10 时域抽样信号的傅立叶变换 §3.11 抽样定理 §3.12 相关系数 §3.13 能量谱和功率谱.ppt