《空气动力学》(双语版)chapter11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS:LINEAR THEORY(1/2)

CHAPTER 11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS LINEAR THEORY 11. 1 Introduction This chapter mainly deal with the properties of two-dimensional airfoils at mach number above 0.3 but below 1, where the compressibility must be considered
CHAPTER 11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS: LINEAR THEORY 11.1 Introduction This chapter mainly deal with the properties of two- dimensional airfoils at Mach number above 0.3 but below 1, where the compressibility must be considered

city potential equation PrandtI-Glauet Compressibilty correction Linearized velocity potential equation Improved compressibilty Correction Critical mach number The area rule for transonic flow Figure 11.1 Supercritical air foils Road Map for Chap. 11
Velocity potential equation Linearized velocity potential equation Prandtl-Glauet Compressibilty correction Improved compressibilty Correction Critical Mach number The area rule for transonic flow Supercritical airfoils Figure 11.1 Road Map for Chap.11

1.2 The Velocity Potential Equation For two-dimensional, steady, irrotational, isentropic flow,a velocity potential =o(x, y) can be defined such that V=VO The introduction of velocity potential can greatly simplify the governing equations, we can derive the velocity potential equation from continuity, momentum, energy equations
11.2 The Velocity Potential Equation For two-dimensional , steady, irrotational , isentropic flow, a velocity potential can be defined such that : = (x, y) V = The introduction of velocity potential can greatly simplify the governing equations, we can derive the velocity potential equation from continuity, momentum, energy equations:

The continuity equation for steady two-dimensional flow 无法显示该图片 O(m)+/m)=0 ax 十+1—+ 0 or Ox Substituting u== v= p Into it. we get 0、0 p 0 Or or
The continuity equation for steady,two-dimensional flow is : 0 ( ) ( ) = + y v x u = 0 + + + y v y v x u x u or Substituting into it, we get y v x u = = , ( ) 0 2 2 2 2 = + + + x y x x y y

To eliminate p from above equation, we consider the momentum equation 中p=-pd pldr=p u+y 2 2 02,02 Since the flow we are considering is isentropic, so dp dp
To eliminate from above equation, we consider the momentum equation : dp = −VdV ( ) 2 2 2 2 2 dp = − VdV = − dV = − d u + v + = − 2 2 ( ) ( ) 2 x y dp d Since the flow we are considering is isentropic, so 2 a p d dp s = =

02,0 2a Ox SO a ox Pa(0+ 2a ayl a P( 83,2、oOp,Op=0 ax Ox Ox ay ay
+ = − 2 2 2 ( ) ( ) 2 x y d a d + = − 2 2 2 ( ) ( ) x 2a x x y so + = − 2 2 2 ( ) ( ) y 2a y x y ( ) 0 2 2 2 2 = + + + x y x x y y

We get the velocity potential equation 102|0 2 X 200、O =0 a ox In this equation, the speed of sound is also the function ofφ y
( )( ) 0 2 ( ) 1 ( ) 1 1 1 2 2 2 2 2 2 2 2 2 2 = − + − − a x y x y a x x a y y We get the velocity potential equation: In this equation , the speed of sound is also the function of : + − = − 2 2 2 0 2 ( ) ( ) 2 1 x y a a (11.12)

For subsonic flow, Eq. 11 12 is an elliptic partial differential equation. For supersonic flow, Eq 11 12 is a hyperbolic partial differential equation. For transonic flow, Eq 11 12 is mixed type equation
For subsonic flow, Eq. 11.12 is an elliptic partial differential equation. For supersonic flow, Eq.11.12 is a hyperbolic partial differential equation. For transonic flow, Eq.11.12 is mixed type equation

Eq. 11 12 represents a combination of continuity, momentum, energy equations. In principle, it can be solved to obtain for the flow field around any two-dimensional flow The infinite boundary condition is ao=vo ax 0p=0 The wall boundary condition is 0p=0 an
Eq. 11.12 represents a combination of continuity, momentum, energy equations. In principle, it can be solved to obtain for the flow field around any two-dimensional flow. The infinite boundary condition is = = V x u = 0 = y v The wall boundary condition is = 0 n

Once is known, all the other value flow variables are directl obtained as follows Calculate u and v: l ao p and d x 2 Calculate a 0p2, x 3. Calculate M: M √u2+y 4. Calculate Tp,p: T=10(+M) B=P0(1+2 M2) 2 0(1+ M2)
Once is known, all the other value flow variables are directly obtained as follows: 1. Calculate u and v: and x u = y v = 2.Calculate a: + − = − 2 2 2 0 ( ) ( ) 2 1 x y a a 3.Calculate M: a u v a V M 2 2 + = = 4. Calculate T,p, : 1 1 2 0 2 1 0 2 1 0 ) 2 1 (1 ) 2 1 (1 ) 2 1 (1 − − − − − − = + − = + − = + M p p M T T M
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(4/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(3/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(2/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(1/4).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(3/3).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(2/3).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(1/3).ppt
- 《空气动力学》(双语版)Chapter 7 Compressible Flow:Some Preliminary Aspects(2/2).ppt
- 《空气动力学》(双语版)Chapter 7 Compressible Flow:Some Preliminary Aspects(1/2).ppt
- 《空气动力学》(双语版)chapter 12 The compressibilty correction rule for thin wing.ppt
- 《空气动力学》(双语版)CHAPTER 10 COMPRESSIBLE FLOW THROUGH NOZZLES, DIFFUSERS, AND WIND TUNNELS(10.4-10.6).ppt
- 《空气动力学》(双语版)CHAPTER 10 COMPRESSIBLE FLOW THROUGH NOZZLES, DIFFUSERS, AND WIND TUNNELS(10.1-10.3).ppt
- 上海海事大学:《天文航海》课程教学资源(PPT讲稿).ppt
- 西北工业大学:《航空发动机燃烧学》讲义.doc
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 20:Phase Plane analysis:.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 14:Introduction to nonlinear systesm.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 19:More about Dual-input describing.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 15:Describing functions.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 18:Dual-input describing functions.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 16:Describing functions, More.pdf
- 《空气动力学》(双语版)chapter11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS:LINEAR THEORY(2/2).ppt
- 《空气动力学》(双语版)Chapter 5 Incompressible Flow Finite Wings.ppt
- 《空气动力学》(双语版)Chapter 4 Incompressible Flow Over Airfoils.ppt
- 《空气动力学》(双语版)Chapter 3 Fundamentals of Inviscid, incompressible Flow.ppt
- 《空气动力学》(双语版)Chapter 2 Aerodynamics:Some Fundamental Principles and Equations.ppt
- 《空气动力学》(双语版)Chapter 1 Aerodynamics:Some Introductory Thoughts.ppt
- 《系统工程》(外文版) Systems Engineering.pdf
- 南京航空航天大学:《航空发动机构造》第一章 绪论.pdf
- 南京航空航天大学:《航空发动机构造》第二章 发动机受力分析.pdf
- 南京航空航天大学:《航空发动机构造》第三章 压气机.pdf
- 南京航空航天大学:《航空发动机构造》第五章 燃烧室、加力燃烧室和排气装置.pdf
- 南京航空航天大学:《航空发动机构造》第六章 航空发动机的支承.pdf
- 南京航空航天大学:《航空发动机构造》第七章 附件系统.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) The Restaurant analogy.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) Governing equations where n' is orbital frequency in rad/sec.pdf
- 美国麻省理工大学:《航天系统工程》(英文版)Designing Team Presentations.pdf
- 美国麻省理工大学:《航天系统工程》(英文版)Earned Value Project Management.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) How not to present.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) Spacecraft Manufacture and Test.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) Creating a Professional Design Document.pdf