《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(4/4)

斜波产生的根源 斜激波关系式 普朗特一梅耶膨 胀波 流过尖楔与圆锥 的超音速流 激波干扰与反射 脱体激波 激波膨胀波理论及其在 超音速翼型中的应用 图95第九章路线图
斜波产生的根源 普朗特—梅耶膨 胀波 斜激波关系式 流过尖楔与圆锥 的超音速流 激波干扰与反射 脱体激波 激波-膨胀波理论及其在 超音速翼型中的应用 图9.5 第九章路线图

Streamline ③ FIGURE 9.17 Regular reiection of a shock wave from a solid boundary 入射激波( ncident shock wave):点A处产生的斜激波 反射激波( Reflected shock wave):入射激波打到水平壁面B点, 不会自动消失,而是产生另外一个由B点发出的斜激波,以保 证激波后流动满足流线与物面相切的边界条件。这个由B点发 出的斜激波就是反射激波
入射激波(Incident shock wave): 点A处产生的斜激波 反射激波(Reflected shock wave): 入射激波打到水平壁面B点, 不会自动消失,而是产生另外一个由B点发出的斜激波,以保 证激波后流动满足流线与物面相切的边界条件。这个由B点发 出的斜激波就是反射激波

激波反射与干扰多种多样,在本节中我们给出如下几种常见 类型 马赫反射( Mach reflection) 在给定偏转角θ的条件下,假设M稍稍大于能在压缩拐角 处产生直的斜激波所需要的最小马赫数值,这时,在角点处 会存在一个直的入射斜激波。然而,我们知道通过激波马赫 数下降,即M2M1,这一下降会使M2小于使气流通过直的反 射激波偏转θ角度所需的最小马赫数。在这种情况下,我们由 斜激波理论可知没有直的反射激波存在。图917所示的常规反 射将不可能出现。实际发生的情形如图918所示,由角点发出 的直入射斜激波在上壁面附近弯曲,并在上壁面变成一正激 波。这个正激波保证了上壁面处的壁面边界条件。另外,由 正激波上分支出一个弯的反射激波向下游传播。如图918所示 的这种波型,称为马赫反射。 反射波后的特性没有理论方法求解,可采用数值解法求解
激波反射与干扰多种多样,在本节中我们给出如下几种常见 类型: •马赫反射(Mach Reflection) 在给定偏转角θ的条件下,假设M1稍稍大于能在压缩拐角 处产生直的斜激波所需要的最小马赫数值,这时,在角点处 会存在一个直的入射斜激波。然而,我们知道通过激波马赫 数下降,即M2<M1 , 这一下降会使 M2小于使气流通过直的反 射激波偏转θ角度所需的最小马赫数。在这种情况下,我们由 斜激波理论可知没有直的反射激波存在。图9.17所示的常规反 射将不可能出现。实际发生的情形如图9.18所示,由角点发出 的直入射斜激波在上壁面附近弯曲,并在上壁面变成一正激 波。这个正激波保证了上壁面处的壁面边界条件。另外,由 正激波上分支出一个弯的反射激波向下游传播。如图9.18所示 的这种波型,称为马赫反射。 反射波后的特性没有理论方法求解,可采用数值解法求解

FIGURE 9.18 Mach refection 马赫反射图示
马赫反射图示

右行、左行激波干扰( Intescetion of right- and left-running shock waves) A:左行波 B:右行波 3 Sip line C:激波B的折射波 M1>1 ① D激波A的折射波 EF:滑移线 务的 FIGURE 9. 19 fiAf: Refracted Intersection of right. and left-running shock waves 滑移线: Slip line
•右行、左行激波干扰 (Intescetion of right- and left-running shock waves) A:左行波 B:右行波 EF:滑移线 C:激波B的折射波 D:激波A的折射波 折射:Refracted 滑移线:Slip line

两左行激波干扰 D FIGURE 9.20 Intersection of two left-running shock waves. 两同向激波相交形成一更强的激波CD,同时伴随一个弱反 射波CE。这一反射波是必须的,以调节保证滑移线CF分 开的4区和5区速度方向相同
• 两左行激波干扰 两同向激波相交形成一更强的激波CD, 同时伴随一个弱反 射波CE。这一反射波是必须的,以调节保证滑移线CF分 开的4区和5区速度方向相同

9.5 DTACHED SHOCK WAVE IN FRONT OFA BLUNT BODY 钝头体前的脱体激波 Strong shack M<1 Shock detachment distance:激波脱体距离; Sonic line:音速线
9.5 DTACHED SHOCK WAVE IN FRONT OF A BLUNT BODY 钝头体前的脱体激波 Shock detachment distance :激波脱体距离;Sonic line:音速线

9.6 PRANDTL-MEYER EXPANSION WAVES 普朗特-梅耶膨胀波 ① M,>1 P TL FIGURE 9.23 Prandtl Meyer expansion 特别要注意:膨胀过程是一个等熵过程。 要解决的问题是:已知上游马赫数M1及其它流动特性(区域1) 求通过偏转角0膨胀后的下游(区域2)的特性
特别要注意:膨胀过程是一个等熵过程。 要解决的问题是:已知上游马赫数M1及其它流动特性(区域1), 求通过偏转角θ膨胀后的下游(区域2)的特性。 9.6 PRANDTL-MEYER EXPANSION WAVES 普朗特-梅耶膨胀波

吖p Geometrical construction for the infinitesimal changes across an infinitesimally weak wave(in the FIGURE 9.24 timit. a Mach wave) 考虑一个以无限小的偏转d0引起的非常弱的波,如上图所示。这 个波实际上就是与上游速度夹角为的马赫波。我们前面已经证明 了通过斜波波前波后的切向速度分量保持不变。所以将波前速度的 大小与方向用AB矢量线段表示画在波后,就与表示波后速度大小 和方向的AC矢量线段构成一个三角形ABC。三个内角的大小如图 所示。注意,波前波后切向速度分量不变保证了CB垂直于马赫波
考虑一个以无限小的偏转dθ引起的非常弱的波,如上图所示。这 个波实际上就是与上游速度夹角为μ的马赫波。我们前面已经证明 了通过斜波波前波后的切向速度分量保持不变。所以将波前速度的 大小与方向用AB矢量线段表示画在波后,就与表示波后速度大小 和方向的AC矢量线段构成一个三角形ABC。三个内角的大小如图 所示。注意,波前波后切向速度分量不变保证了CB垂直于马赫波

d=√M2-1 (9.32) 参照图9,23,将(9,32)式从偏角为零,马赫数为M1的区域1,积分 到偏角为θ,马赫数为M的区域2: M:>1 T1 M卫 FIGURE 9.23 Prandtl-Meyer expansion d=6 M-1 (9.33) M
= = − 2 1 1 2 0 M M V dV d M 参照图9.23,将(9.32)式从偏角为零,马赫数为M1的区域1,积分 到偏角为θ,马赫数为M2的区域2: V dV d M 1 2 = − (9.32) (9.33)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(3/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(2/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(1/4).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(3/3).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(2/3).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(1/3).ppt
- 《空气动力学》(双语版)Chapter 7 Compressible Flow:Some Preliminary Aspects(2/2).ppt
- 《空气动力学》(双语版)Chapter 7 Compressible Flow:Some Preliminary Aspects(1/2).ppt
- 《空气动力学》(双语版)chapter 12 The compressibilty correction rule for thin wing.ppt
- 《空气动力学》(双语版)CHAPTER 10 COMPRESSIBLE FLOW THROUGH NOZZLES, DIFFUSERS, AND WIND TUNNELS(10.4-10.6).ppt
- 《空气动力学》(双语版)CHAPTER 10 COMPRESSIBLE FLOW THROUGH NOZZLES, DIFFUSERS, AND WIND TUNNELS(10.1-10.3).ppt
- 上海海事大学:《天文航海》课程教学资源(PPT讲稿).ppt
- 西北工业大学:《航空发动机燃烧学》讲义.doc
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 20:Phase Plane analysis:.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 14:Introduction to nonlinear systesm.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 19:More about Dual-input describing.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 15:Describing functions.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 18:Dual-input describing functions.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 16:Describing functions, More.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 13:More about plants with right.pdf
- 《空气动力学》(双语版)chapter11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS:LINEAR THEORY(1/2).ppt
- 《空气动力学》(双语版)chapter11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS:LINEAR THEORY(2/2).ppt
- 《空气动力学》(双语版)Chapter 5 Incompressible Flow Finite Wings.ppt
- 《空气动力学》(双语版)Chapter 4 Incompressible Flow Over Airfoils.ppt
- 《空气动力学》(双语版)Chapter 3 Fundamentals of Inviscid, incompressible Flow.ppt
- 《空气动力学》(双语版)Chapter 2 Aerodynamics:Some Fundamental Principles and Equations.ppt
- 《空气动力学》(双语版)Chapter 1 Aerodynamics:Some Introductory Thoughts.ppt
- 《系统工程》(外文版) Systems Engineering.pdf
- 南京航空航天大学:《航空发动机构造》第一章 绪论.pdf
- 南京航空航天大学:《航空发动机构造》第二章 发动机受力分析.pdf
- 南京航空航天大学:《航空发动机构造》第三章 压气机.pdf
- 南京航空航天大学:《航空发动机构造》第五章 燃烧室、加力燃烧室和排气装置.pdf
- 南京航空航天大学:《航空发动机构造》第六章 航空发动机的支承.pdf
- 南京航空航天大学:《航空发动机构造》第七章 附件系统.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) The Restaurant analogy.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) Governing equations where n' is orbital frequency in rad/sec.pdf
- 美国麻省理工大学:《航天系统工程》(英文版)Designing Team Presentations.pdf
- 美国麻省理工大学:《航天系统工程》(英文版)Earned Value Project Management.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) How not to present.pdf
- 美国麻省理工大学:《航天系统工程》(英文版) Spacecraft Manufacture and Test.pdf