《空气动力学》(双语版)chapter 12 The compressibilty correction rule for thin wing

* The compressibilty correction rule for thin wing The effect of compressibility in 3-D flows is somewhat less dramatic than with 2-D flows, but many of the same effects become important. Many of the same techniques for predicting linear compressibility effects work in 3-D too. For example we can transform the 3-D Prandtl-Glauert equation into the 3-D Laplace equation for incompressible flow by changing variables Just as in 2-D
*The compressibilty correction rule for thin wing The effect of compressibility in 3-D flows is somewhat less dramatic than with 2-D flows, but many of the same effects become important.Many of the same techniques for predicting linear compressibility effects work in 3-D too. For example, we can transform the 3-D Prandtl-Glauert equation into the 3-D Laplace equation for incompressible flow by changing variables just as in 2-D

a9 a. ao +~,2 0 2 Defining the geometry of a finite wing: y=f(x, z) So the boundary condition is: dB
0 ˆ ˆ ˆ 2 2 2 2 2 2 2 = + + x y z Defining the geometry of a finite wing: y=f(x,z) So the boundary condition is: x y V y = ˆ

Transform the(x,y,z)and 9 in the following way 人.x 1 =1 B203b,203b,0203b 0 2 O22A7 2元:a42
0 2 2 ˆ 2 2 2 ˆ 2 2 2 ˆ 2 2 = + + x y z Transform the (x,y,z) and in the following way: ˆ ˆ = ˆ = = = z y x z y x

Bn 2 If +0+00=0 Derive the boundary ao a, ao condition on 012,05 ox Ox n ,as If O an 2 Then 05
If ˆ 2 ˆ 2 ˆ 2 2 x y z = = 0 2 2 2 2 2 2 = + + = = y x y x y V y ˆ Derive the boundary ˆ condition: x y V y = ˆ = V y x 2 ˆ 1 2 ˆ = y x If Then = V

B222 57 77 βyz 0=B2 0=B
ˆ 2 ˆ 2 ˆ 2 2 x y z = = 1 2 ˆ = y x 2 ˆ = = = = z y x ˆ 1 = = = = z y x

The Geometry relation 0=B Bt 6=B6 6=B6 1=元 1=元 Ab= BA A0=B4 tan xo=o tan x tan no =o tan x
The Geometry relation: tan 1 tan 0 0 0 0 0 0 = = = = = = A A tan 1 tan 0 0 0 0 0 0 = = = = = = A A

The relation of Aerodynamic coefficients 210C 2210p Ba B25 P B 2p,0 C(M,t, 0,a, A, tan x,n)= PC,(M=0, Br,BB, Ba, BA,otan x, a) This correction rule is Goethert Rule
The relation of Aerodynamic coefficients: 2 ,0 2 1 2 1 ˆ 2 p x p C V V C = = − = − tan , ) 1 ( 0, , , , , 1 ( , , , , ,tan , ) 2 C M A C M A p p = = 2 ,0 2 1 2 1 ˆ 2 p x p C V V C = = − = − This correction rule is Goethert Rule

Derivation of the 3-D Prandtl-Glauert correction rule from Goethert rule C(M,t, 0,a, A, tan x, n) C (M=0, T, 0, a, BA,tan x, n B Cn(M=0, Br, BB, Ba, BA,tan x, n) C(M=0,T, 6,a, BA,tan x, n
tan , 1 ( 0, , , , , tan , ) 1 ( 0, , , , , 1 tan , 1 ( 0, , , , , ( , , , , ,tan , ) 2 C M A C M A C M A C M A p p p p = = = = Derivation of the 3-D Prandtl-Glauert correction rule from Goethert rule:

Cn(M, T, 0,a, A, tan x, n) C(M=0, t, 0, a, BA,tan x, n) B This is the Prandt -Glauert correction rule
tan , ) 1 ( 0, , , , , 1 ( , , , , ,tan , ) C M A C M A p p = = This is the Prandtl-Glauert correction Rule

Nonetheless, changing the lift curve slope just by the Prandtl-Glauert factor does not do too badl 2几凸 阝(A+2 A somewhat better approximation is obtained by applying the Prandtl-Glauert correction to the 2-D lift curve slope, then applying the downwash correction from lift line theory 2n(-e)2t 2亿凸 A+2
Nonetheless, changing the lift curve slope just by the Prandtl-Glauert factor does not do too badly: A somewhat better approximation is obtained by applying the Prandtl-Glauert correction to the 2-D lift curve slope, then applying the downwash correction from lift line theory
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《空气动力学》(双语版)CHAPTER 10 COMPRESSIBLE FLOW THROUGH NOZZLES, DIFFUSERS, AND WIND TUNNELS(10.4-10.6).ppt
- 《空气动力学》(双语版)CHAPTER 10 COMPRESSIBLE FLOW THROUGH NOZZLES, DIFFUSERS, AND WIND TUNNELS(10.1-10.3).ppt
- 上海海事大学:《天文航海》课程教学资源(PPT讲稿).ppt
- 西北工业大学:《航空发动机燃烧学》讲义.doc
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 20:Phase Plane analysis:.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 14:Introduction to nonlinear systesm.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 19:More about Dual-input describing.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 15:Describing functions.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 18:Dual-input describing functions.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 16:Describing functions, More.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 13:More about plants with right.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 10:Notch compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 10:Notch compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 12:Plants with right half-plane zeros.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 8:Lead compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 8:Lead compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 7:Lag and PI compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)extra.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 4:Root-Locus Review.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 3:Gain and Phase Margins for unstable.pdf
- 《空气动力学》(双语版)Chapter 7 Compressible Flow:Some Preliminary Aspects(1/2).ppt
- 《空气动力学》(双语版)Chapter 7 Compressible Flow:Some Preliminary Aspects(2/2).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(1/3).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(2/3).ppt
- 《空气动力学》(双语版)CHAPTER 8 NORMAL SHOCK WAVES AND RELATED TOPICS(3/3).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(1/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(2/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(3/4).ppt
- 《空气动力学》(双语版)CHAPTER 9 OBLIQUE SHOCK AND EXPANSION WAVES 斜激波和膨胀波(4/4).ppt
- 《空气动力学》(双语版)chapter11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS:LINEAR THEORY(1/2).ppt
- 《空气动力学》(双语版)chapter11 SUBSONIC COMPRESSIBLE FLOW OVER AIRFOILS:LINEAR THEORY(2/2).ppt
- 《空气动力学》(双语版)Chapter 5 Incompressible Flow Finite Wings.ppt
- 《空气动力学》(双语版)Chapter 4 Incompressible Flow Over Airfoils.ppt
- 《空气动力学》(双语版)Chapter 3 Fundamentals of Inviscid, incompressible Flow.ppt
- 《空气动力学》(双语版)Chapter 2 Aerodynamics:Some Fundamental Principles and Equations.ppt
- 《空气动力学》(双语版)Chapter 1 Aerodynamics:Some Introductory Thoughts.ppt
- 《系统工程》(外文版) Systems Engineering.pdf
- 南京航空航天大学:《航空发动机构造》第一章 绪论.pdf
- 南京航空航天大学:《航空发动机构造》第二章 发动机受力分析.pdf
- 南京航空航天大学:《航空发动机构造》第三章 压气机.pdf