西安交通大学:《电力电子变电技术》5SGA30j2501

VDRM E 2500 V Gate turn-off Thyristor ITGOM E 3000 A 30 KA v =1.50V 5SGA30J2501 =0.33ms Voclin 1400 V Doc. No. 5SYA 1213-02 Aug 2000 Patented free-floating silicon technology Low on-state and switching losses Annular gate electrode Industry standard housing Cosmic radiation withstand rating Blocking VDRM Repetitive peak off-state voltage 2500VVeR≥2V VRRM Repetitive peak reverse voltage 17V IDRM Repetitive peak off-state current< 100 mA VD=VDRM VeP≥2V IRRM Repetitive peak reverse current< 50 mA VR=VE RGK= Permanent DC voltage for 100 1400V-40≤T≤125°. Ambient cosmic FIT failure rate radiation at sea level in open air Mechanical data (see Fig 4) Mounting force max 44 kN A Acceleration Device unclamped 50m/s2 Device clamped 200m/s2 M Weight 1.3 kg Surface creepage distance ≥33mm D Air strike distance ≥15mm ABB Semiconductors AG reserves the right to change specifications without notice. ABR
ABB Semiconductors AG reserves the right to change specifications without notice. VDRM = 2500 V ITGQM = 3000 A ITSM = 30 kA VT0 = 1.50 V rT = 0.33 mΩ VDClin = 1400 V Gate turn-off Thyristor 5SGA 30J2501 Doc. No. 5SYA 1213-02 Aug. 2000 • Patented free-floating silicon technology • Low on-state and switching losses • Annular gate electrode • Industry standard housing • Cosmic radiation withstand rating Blocking VDRM Repetitive peak off-state voltage 2500 V VGR ≥ 2V VRRM Repetitive peak reverse voltage 17 V IDRM Repetitive peak off-state current ≤ 100 mA VD = VDRM VGR ≥ 2V IRRM Repetitive peak reverse current ≤ 50 mA VR = VRRM RGK = ∞ VDClink Permanent DC voltage for 100 FIT failure rate 1400 V -40 ≤ Tj ≤ 125 °C. Ambient cosmic radiation at sea level in open air. Mechanical data (see Fig. 4) Fm min. 36 kN Mounting force max. 44 kN A Acceleration: Device unclamped Device clamped 50 200 m/s2 m/s2 M Weight 1.3 kg DS Surface creepage distance ≥ 33 mm Da Air strike distance ≥ 15 mm

5sGA30J2501 GTO Data On-state Max average on-state current 1300A Half sine wave, Tc =85C ITRMs Max RMs on-state current 2040A ITSMMax. peak non-repetitive 30 ka tp 10msT=125℃c surge current 51 katp 1 ms After surge 1?t Limiting load integral 45010°A2st= 10 ms VD=VR=OV 1.30106A2stp On-state voltage 2.50V 3000A To Threshold voltage 1.50V r=400-4000AT=125° Slope resistance 0.33mg Holding current 100A T=25°C Gate Gate trigger voltage 1.2V 24VT;=25°C Gate trigger current 4.0A RA =0.1 Q2 VGRM Repetitive peak reverse voltage17V GRM Repetitive peak reverse current 50 mA V Turn-on switching di/dterit Max. rate of rise of on-state 500Apsf=200z=3000A,T= current 1000 A/us f=1Hz GM=30 A, dig/dt=20 A/us Delay time 2.5μs 0.5VRMT=125°C Rise time 5.0ys =3000 a di/dt=300Aμs ton(min)Min on-time 100 Hs IGM= 30a dig/dt= 20 A/us Turn-on energy per pulse 2.00 Ws C 5 uF Rs 5Ω Turn-off switching Max controllable turn -off 3000A VoM= VDRM digo/dt 40 Aus current 5 HF ≤0.3uH Storage time 250μsV= DRM Fall time 3.0 Aus tot Min off-time 100 us ITGQ = ITGOM Eoff Turn-off energy per pulse 4.7 WsCs 5μFR 5Q Peak turn - off gate current 1000A Ls≤0.3pH ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug 2000 page 2 of 6
5SGA 30J2501 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug. 2000 page 2 of 6 GTO Data On-state ITAVM Max. average on-state current 1300 A Half sine wave, TC = 85 °C ITRMS Max. RMS on-state current 2040 A ITSM 30 kA tP = 10 ms Tj Max. peak non-repetitive = 125°C surge current 51 kA tP = 1 ms After surge: I 2 t Limiting load integral 4.50⋅106 A2 s tP = 10 ms VD = VR = 0V 1.30⋅106 A2 s tP = 1 ms VT On-state voltage 2.50 V IT = 3000 A VT0 Threshold voltage 1.50 V IT = 400 - 4000 A Tj = 125 °C rT Slope resistance 0.33 mΩ IH Holding current 100 A Tj = 25 °C Gate VGT Gate trigger voltage 1.2 V VD = 24 V Tj = 25 °C IGT Gate trigger current 4.0 A RA = 0.1 Ω VGRM Repetitive peak reverse voltage 17 V IGRM Repetitive peak reverse current 50 mA VGR = VGRM Turn-on switching di/dtcrit Max. rate of rise of on-state 500 A/µs f = 200Hz IT = 3000 A, Tj = 125 °C current 1000 A/µs f = 1Hz IGM = 30 A, diG/dt = 20 A/µs td Delay time 2.5 µs VD = 0.5 VDRM Tj = 125 °C tr Rise time 5.0 µs IT = 3000 A di/dt = 300 A/µs ton(min) Min. on-time 100 µs IGM = 30 A diG/dt = 20 A/µs Eon Turn-on energy per pulse 2.00 Ws CS = 5 µF RS = 5 Ω Turn-off switching ITGQM Max controllable turn-off 3000 A VDM = VDRM diGQ/dt = 40 A/µs current CS = 5 µF LS ≤ 0.3 µH ts Storage time 25.0 µs VD = ½ VDRM VDM = VDRM tf Fall time 3.0 µs Tj = 125 °C diGQ/dt = 40 A/µs toff(min) Min. off-time 100 µs ITGQ = ITGQM Eoff Turn-off energy per pulse 4.7 Ws CS = 5 µF RS = 5 Ω IGQM Peak turn-off gate current 1000 A LS ≤ 0.3 µH

5sGA30J2501 hermal Storage and operating 40.125°C junction temperature range Thermal resistance 22 K/kW Anode side cooled junction to case 27 K/kW Cathode side cooled 12 K/kW Double side cooled Rthch Thermal resistance case to 3K/kW Single side cooled heat sink 3 K/kW Double side cooled Analytical function for transient thermal pedance 4 Zthjc(t ∑ R(1-e t/ ti RI(K/kW)5.4 4.5 1.7 0.4 )120.1700101 ZtJc(K/kW) 642o t(s) Fig. 1 Transient thermal impedance, junction to case ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug 2000
5SGA 30J2501 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug. 2000 page 3 of 6 Thermal Tj Storage and operating -40...125°C junction temperature range RthJC Thermal resistance 22 K/kW Anode side cooled junction to case 27 K/kW Cathode side cooled 12 K/kW Double side cooled RthCH Thermal resistance case to 3 K/kW Single side cooled heat sink 3 K/kW Double side cooled i 12 3 4 RI (K/kW) 5.4 4.5 1.7 0.4 Analytical function for transient thermal impedance: Z (t) = R (1 - e ) 4 i 1 -t / thJC ∑ i = τi τi (s) 1.2 0.17 0.01 0.001 Fig. 1 Transient thermal impedance, junction to case

5sGA30J2501 G"C Max 125cM Fig 2 On-state characteristics ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug 2000
5SGA 30J2501 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug. 2000 page 4 of 6 Fig. 2 On-state characteristics

5sGA30J2501 Anode dild 0.9h 0.9v 01V 0.25 TX Gate dig/dt GM 0.1l VG (t) dico/dt Fig 3 General current and voltage waveforms with GTO-specific symbols cant conoco D3n mm(ANG 12)l center Fig 4 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug 2000 page 5 of 6
5SGA 30J2501 ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA 1213-02 Aug. 2000 page 5 of 6 Fig. 3 General current and voltage waveforms with GTO-specific symbols Fig. 4 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise

5sGA30J2501 Reverse avalanche capability In operation with an antiparallel freewheeling diode the gto reverse voltage ve may exceed the rate value VRRM due to stray inductance and diode turn-on voltage spike at high di/dt. The GTo is then driven into reverse avalanche. This condition is not dangerous for the GTo provided avalanche time and current are below 10 us and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation: VGR=10.15 V ABB Semiconductors AG reserves the right to change specifications without notice. ABB ABB Semiconductors AG Doc. No. 5SYA 1213-02 Aug. 2000 Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland +41(0)628886419 +41(0)628886306 E-mail info@ch.abb.com Internet w. abbsem. com
5SGA 30J2501 ABB Semiconductors AG reserves the right to change specifications without notice. ABB Semiconductors AG Doc. No. 5SYA 1213-02 Aug. 2000 Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland Tel: +41 (0)62 888 6419 Fax: +41 (0)62 888 6306 E-mail info@ch.abb.com Internet www.abbsem.com Reverse avalanche capability In operation with an antiparallel freewheeling diode, the GTO reverse voltage VR may exceed the rate value VRRM due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below 10 µs and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : VGR = 10… 15 V
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安交通大学:《电力电子变电技术》schottky power rectifier.pdf
- 西安交通大学:《电力电子变电技术》power diodes.pdf
- 西安交通大学:《电力电子变电技术》high power diode laser.pdf
- 西安交通大学:《电力电子变电技术》high power diode driver for pulsed laser diode.pdf
- 西安交通大学:《电力电子变电技术》fast recovery diode module.pdf
- 西安交通大学:《电力电子变电技术》fast recovery diode 5SDF05D2505.pdf
- 西安交通大学:《电力电子变电技术》fast rcovery diode.pdf
- 西安交通大学:《电力电子变电技术》Rectifier Diode.pdf
- 西安交通大学:《电力电子变电技术》Diodes Rectifier diode 1SR154400/1sR154600.pdf
- 西安交通大学:《电力电子变电技术》使用说明书.doc
- 职业学校课程《接触器自锁正转控制》PPT教学设计(郭医军).ppt
- 南京理工大学自动化学院系:《电力系统分析》电子书(共六章).ppt
- 南京理工大学自动化学院系:《电力系统分析》课程简介.ppt
- 东北电力大学电气工程学院:《电机学》第六章 同步电机.ppt
- 东北电力大学电气工程学院:《电机学》第五章 感应电机.ppt
- 东北电力大学电气工程学院:《电机学》第三章 直流电机.ppt
- 东北电力大学电气工程学院:《电机学》第四章 交流绕组的共同理论.ppt
- 东北电力大学电气工程学院:《电机学》第二章 变压器.ppt
- 东北电力大学电气工程学院:《电机学》第一章 绪论.ppt
- 《电机与机电学》学习指导书(共九章,〔美〕S.A.纳萨尔.pdf
- 西安交通大学:《电力电子变电技术》IGBT-INTRO.pdf
- 西安交通大学:《电力电子变电技术》IGBT (Discrete).pdf
- 西安交通大学:《电力电子变电技术》Power MOSFET Basics.pdf
- 西安交通大学:《电力电子变电技术》IGCT.pdf
- 西安交通大学:《电力电子变电技术》IGCT1.pdf
- 西安交通大学:《电力电子变电技术》TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic.pdf
- 西安交通大学:《电力电子变电技术》Bipolar junction transistor - History.pdf
- 西安交通大学:《电力电子变电技术》The Bipolar Junction Transistor.pdf
- 西安交通大学:《电力电子变电技术》Bi-Directional Control Thyristor.pdf
- 西安交通大学:《电力电子变电技术》DCR1473SY/DCR1473SV.pdf
- 西安交通大学:《电力电子变电技术》fast switching thyristor.pdf
- 西安交通大学:《电力电子变电技术》TECHNICAL REPORTS.pdf
- 西安交通大学:《电力电子变电技术》Phase Control Thyristor.pdf
- 西安交通大学:《电力电子变电技术》SCR-DNX_MP02XXX190.pdf
- 西安交通大学:《电力电子变电技术》MP02XXX190 Series.pdf
- 西安交通大学:《电力电子变电技术》课程教学资源(PPT课件)第一章 电力电子器件概述.pps
- 西安交通大学:《电力电子变电技术》课程教学资源(PPT课件)第二章 整流电路.pps
- 西安交通大学:《电力电子变电技术》课程教学资源(PPT课件)第三章 直流斩波电路.pps
- 西安交通大学:《电力电子变电技术》课程教学资源(PPT课件)第四章 交流电力控制电路和交变频电路.pps
- 西安交通大学:《电力电子变电技术》课程教学资源(PPT课件)第五章 逆变电路.pps