《航天推进 Space Propulsion》(英文版)Lecture 16: Ion Engine Performance. Brophy’s Theory DEFINITIONS:

16.522, Space Propulsion Prof. Manuel martinez-sanchez Lecture 16: Ion Engine performance. Brophy's Theory DEFINITIONS: JB=Beam ion(and neutralizer electron current) Je=cathode emitted current ]=ion current to cathode- otential surfaces D=current through disch power supply Op=total ion production rate Jia=lon current to anode Jacc=lon current intercepted by accel. grid Current balances JD=JE+Jc+JB+J and also JD=P+JE -, Jp=JB +Jc +Jia Jacc(ion balance) Useful Power JB(VB+vD) Total Power JBVB+JDVD +JaccvB+ heaters Energy cost r beam i Total P - P. p-JB Vo Jace vB+ PH PH =JEVO JD-JB=JE +Jc+Ja JEVD+PHp JVo+J f Tac lvB+ vo)(plasma ion cost) Lecture 16 Prof. manuel martinez- Sanchez
16.522, Space Propulsion Prof. Manuel Martinez-Sanchez Lecture 16: Ion Engine Performance. Brophy’s Theory DEFINITIONS: JB=Beam ion (and neutralizer electron current) JE=cathode emitted current Jc=ion current to cathode- potential surfaces JD=current through disch. power supply JP=total ion production rate Jia=Ion current to anode Jacc=Ion current intercepted by accel. grid Current Balances: JD = JE + Jc + JB + Jacc and also JD = JP + JE − Jia JP = JB + JC + Jia + Jacc (ion balance) B Useful Power = (V J + VD ) B ' Total Power = V J + V J B B D D + accV J B + PHeaters Energy cost ' B P. Total - P. Useful (JD − )V J D + JaccVB + PH per beam ion ε B = = JB JB PH = V J E c JD − JB = JE + Jc + Jacc ' ε B = ⎜ ⎜ D E + PH ⎞ ⎟ ⎟ JP V J D + Jacc (V + VD ⎛ V J ) + c B ⎝ JP ⎠ JB JB ε p ε ' ε B = p + fc VD + facc (V + VD ) (plasma ion cost) fB fB fB B 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 1 of 8

JeVo +P here 8,f=c, f acc and Ep= )p More definitions: U+= ionization energy per ion U= excitation energy of level j Jj= excitation rate(total) JLp= loss rate of primary electrons Em mean energy of Maxwellian electron group Discharge Energy Balance JLpVo p+JE-Jia-JLp) JEVo P Define s Then (VD-Em)LpJE-Jia PH/Jp fe em++ P JE VI JE PvD PoPo Jevo Jp E 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 2 of 8
V J + PH where fB = JB ,fc = Jc , facc = Jacc and ε p = D E J J J J p p p p More definitions: U+ = ionization energy per ion Uj = excitation energy of level j Jj = excitation rate (total) JLP = loss rate of primary electrons ε m = mean energy of Maxwellian electron group Discharge Energy Balance U+ j + ∑ j J P j J U + P DLp J V J + ε m ( pJ + EJ P ia J − J − ) Lp J = p D E J V J = p ε − p H J P Define o ε = U+ j + ∑ j J p j J U . Then − P H J P + p ε = oε + ε m + (V D − ε m ) E Lp J J p E J J − p ia J J ε m p m⎜ ⎜ ⎝ ⎛ + ε ε D H V − P / pJ ⎟ ⎟ ⎠ ⎞ Use p ε D H V − P P / J p ⎢ ⎢ ⎣ ⎡ ε 1 − D mD V V − ε E Lp J J − D m V ε ⎥ ⎥ ⎦ ⎤ = o ε + ε m − (V D − ε m ) E Lp J J D p H V J P − p ia J J ε m − ε m D p H V J P + D p H V J P + p H J P 1 − E Lp J J − D m V ε ⎜ ⎜ ⎝ ⎛ 1 − E Lp J J ⎟ ⎟ ⎠ ⎞ 1 − ⎜ ⎜ ⎝ ⎛ 1 − E Lp J J ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ 1 − D m V ε ⎟ ⎟ ⎠ ⎞ 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 2 of 8

Eo + em Jp).PH J VD NOTE: If we write PH=EVC, the equation for a, becomes Eo +Emll Jia Survival equation for Primary Electrons Jue =e-rotnine, where atot=(o,+Exc/primaries.Also, te is the path length for a JE primary electon before it would be captured by the anode, if it did not collide with a neutral before before that. This path lenght is that of the electrons helical path around one of the magnetic lines of force created by the confinement magnets The neutral density is related to the flow rate by no (o= grid system transparency for neutrals; nu utilization efficiency) 4m(1-nukole 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 3 of 8
1 JLp − ε m JLp ε m + ⎛ ⎜ ⎜ ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎞ ⎟ ⎟ ε m − ⎛ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ PH VD Jia ε p = ε o m + ε − J − 1 − 1 − ε m J ⎝ E V D ⎠ Jp ⎝ V J V D E D ⎠ p ⎞ ⎟ ⎟ ε m J ⎛ 1 + ⎛ ⎜ ⎜ ⎞ ⎟ ⎟ Lp PH 1 Jε ⎜ ⎜ ⎠⎝ - − V J ⎝ p ⎠ p Jia o m 1 Jp PH J J Lp 1 m p 1 JE VD + ⎞ ⎟ ⎟ ⎠ ⎞ ⎟ ⎟ ⎠ ε − − ⎛ ⎜ ⎜ ⎝ ⎛ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ ⎠ + ε − ε ⎛ ⎜ ⎜ ⎝ ε p = NOTE: If we write PH = V J the equation for ε p c E , becomes ⎛ ⎜ ⎜ ⎞ ⎟ ⎟ Jia ε o m + ε 1 − J ⎛ ⎞ ⎟ ⎟ ⎝ p ⎠ VC ⎜ ⎜ ⎞ ⎝ ⎟ ⎟ ⎛ ⎜ ⎜ ε p = ⎝ 1 − 1 + J ⎞ V ⎟ ⎟ V ⎛ ε m ⎜ ⎜ Lp D ⎠ J 1 − E ⎠⎝ D ⎠ Survival Equation for Primary Electrons JLp σ σ ) tot exc primaries. primary electon before it would be captured by the anode, if it did not collide with a neutral before before that. This path lenght is that of the electron’s helical path around one of the magnetic lines of force created by the confinement magnets. The neutral density is related to the flow rate by (σ −σ A totn e n = e , where = + Also, Ae is the path length for a + JE Γn cn 4 η 4 u m n (1 − ) (φ = grid system transparency for n = = A m g i cnφ φ neutrals; ηu = utilization efficiency) φ m (1 η u c A m i n g J ⎡ 4 − )σ A ⎤ LP J e = exp ⎢− ⎥ E ⎢⎣ ⎥⎦ 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 3 of 8

1-exp eo +5m( 11+ve 4 m 1 The quantity Co is a measure of the confinement effectivenss for primary electrons (better for long electron path (e, small grid open area Ago ) If Co>o0, the energy cost per ion, Ep, tends to the limit ep, which then represents the cost per ion primary losses Calculation of Primary /Secondary population Ratio Primaries are endowed initially with an energy Vo, and, if they did not escape, would all thermalize eventually to an energy Em. The rate at which they disappear in that case is simply the rate of ionization or excitation by primaries(a primary is assumed to become a secondary-Maxwellian after one ionization or one excitation). So, the net energy input rate per unit volume due to injection of primaries is(without escape nnnpUpOrDXvo-Er (or =o. + exd This energy is used by the primaries and their secondary progenie"to (a) Produce ionization by primaries. Per ionization event, this uses U++ Em, since the new electron created has energy s Total p.u. volume n,,(VD )u++6m) (b)Excite atom, by primaries Total energy rate p.u. volume n," exc(voJexc ( a shorthand for npUp∑oy) (c) Produce ionization by secondaries(Mawellian). The rate p.u. volume nn fm(cko. (cAr cdc=n, cema 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez
ε* p ε p = 1 − exp[− m c (1 − η )] o n [ε + ε m (1 − fia )]⎜ ⎛ 1 + Vc ⎟ ⎞ o ⎜ ⎝ VD ⎠ ⎟ Co 4 σ T Ae ε* where p = , and = ε m c A m n g i φ 1 − VD The quantity Co is a measure of the confinement effectivenss for primary electrons (better for long electron path Ae , small grid open area Ag φ ). If Co → ∞ , the energy cost per ion, ε p , tends to the limit ε * p , which then represents the cost per ion no primary losses. Calculation of Primary/Secondary Population Ratio Primaries are endowed initially with an energy VD, and, if they did not escape, would all thermalize eventually, to an energy ε m . The rate at which they disappear in that case is simply the rate of ionization or excitation by primaries (a primary is assumed to become a secondary-Maxwellian - after one ionization or one excitation). So, the net energy input rate per unit volume due to injection of primaries is (without escape) υ σ T (V )(V − ε m ) (σ = σ + + σ exc n n ) n p p D D T This energy is used by the primaries and their secondary “progenie” to (a) Produce ionization by primaries. Per ionization event, this uses U+ + Em, since the new electron created has energy ε m . Total p.u. volume n n υ σ T (V )(U + + ε m ) n p p D (b) Excite atom, by primaries Total energy rate p.u. volume n n υ σ exc ( ) p p n U v o exc (a shorthand for υ ∑σ jU j n ) p p j (c) Produce ionization by secondaries (Mawellian). The rate p.u. volume is ∞ 2 nn ∫ m ( )c c f σ + ( ) c 4π c dc ≡ n e n c n m σ + o 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 4 of 8

where a,=nfm(ck o,(chmc2dc a 8 kTe nm=m ncdc The ionization cross-section o (c)in zero below c Using a Maxwellian form for fm(c), we find easily Ge=euo, udu and the energy spent by secondaries in ionization(p u. time and volume) is then n,nmCeo, (u++em) Similarly, the energy spent in excitation is nnnmCedexcUexc The energy balance is therefore(dividing by n throughout) PuPa. (Wo-Em)=npuplo, (vD Nu++6m)+Gexc(VD Vexd +nmcb. (u++Em)+excUexc) This can be solved for - p U++e+Exc 0. exc -9)-+- which is a function of Te for a fixed Vo. Hence n is also a function of Te. This is because, gi excOM(1- Lecture 16 Prof. manuel martinez- Sanchez Page 5 of 8
∞ 2 where σ c c σ ( )4π dc c + = 1 fm ( ) + c c n e ∫ m o ∞ 8 kTe 2 and ce = , nm = ∫ fm 4π dc c π me o The ionization cross-section σ t (c) in zero below c + = 2eU + . Using a Maxwellian me form for fm ( ) c , we find easily ∞ σ t = ∫ e−u u σ + ( ) ⎛ E ⎞ du u ⎜ ⎜u = ⎟ ⎝ kTe ⎟ ⎠ +u and the energy spent by secondaries in ionization (p.u. time and volume) is then c n n eσ + (U + + ε m ) n m Similarly, the energy spent in excitation is n e m c n n σ excUexc The energy balance is therefore (dividing by nn throughout) υ σ (V υ σ (V )(U + + ε m ) + σ ( D )U V exc ] + c n e [σ (U + + ε m ) + σ excUexc n ] p p + D − ε m ) = n p p [ + D exc m + np This can be solved for : nm U + + ε m + Uexc σ exc np = ce σ + nm (V ) − σ (V ) σ exc (V ) υ p D + D D (V − ε m ) σ T K (U + + ε m D ) − σ + σ + σ + * which is a function of Te for a fixed VD. Hence ε p is also a function of Te. This is because, given ε* p ε p = 1 − exp[− m C (1 − η )] o u 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 5 of 8

cn is seen to be the energy per ion created if no primary electrons were to escape (E,+o). The expression for ep(neglecting ion capture by the screen, fia=0, and heating power, V=o)was 1 Eo=U++U nuPlEx(o) and this does depend on Te and"(Te). Substituting the expression for pfound above, and simplifying, we obtain NOTE: An intermediate expression for En(still containing -p), which will be useful later, is n Calculation of utilization efficienc d Ceo, r JB=fBJ e D/+n ↑m(1-n) 4 v(np2,)+na)4-n)=2m But also n,=nm+np and JB=en, 0.61DB A, i 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 6 of 8
ε * is seen to be the energy per ion created if no primary electrons were to escape p * (ε o → ∞). The expression for ε (neglecting ion capture by the screen, f p ia = o , and heating power, Vc = o ) was pε * = D m mo V − + ε εε 1 ; oε = U+ + p exc J J U exc or ε o = + U + U exc ( ) ( ) + + + υ σ υ σ Dp p Dexc p p Vn Vn σ + σ e m exce m c n c n and this does depend on Te and ( ) e m p T n n . Substituting the expression for m p n n found above, and simplifying, we obtain * σ (V σ + (U + + ε m ) + σ excUexc ε p = V T D D ) [σ σ (V ) − σ (V )σ ]U + σ σ T (V )(V − ε m ) exc + B exc D + exc + D D n * p NOTE: An intermediate expression for ε p (still containing ), which will be useful nm later, is ⎛σ T ⎞ ⎜ ⎟ * VD ⎝ ⎜ σ + ⎠ ⎟ ε p = nm ce σ + 1 + n υ σ (VD ) p p + Calculation of utilization efficiency Jp = ( n Vd υ σ (V ) + c n eσ + )n JB = J f = e )( p p + D m n p B η um e mi ↑ m (1 − η ) 4 u cnφAgmi ( η u V(n υ σ (V ) + c n eσ + ) 1 4 − η u ) p p + D m = cnφAg fB But also n+ = nm + np and JB = n e + 61.0 υ A φi g B 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 6 of 8

Agoi 1+2 UpD)o(D) Divide Cec+ G,4(1-mn)e0.6A响 e0.61B49 o,D) 1 4JBfBvcea, 1+ Vp or(vo)np Up 0.15e68421+ np JBfBVou, Vor(vi So: Given VD, JB, Walls >Cn Geometry: fB,8,i,V,Ag Gas U*,U ELM Can conclude P(Te)Ep(Te)>nu(Te)NOTE: m=i2B so real parameter is m not Then given also le( magnetic geometry)andm→Co→5p→EB Summary Geometry and Gas perating Additional Magentic Field Properties Parameters arameter p,向,V,4g E),exc(E DrB e 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 7 of 8
JB so nm + np = e υBAg φi np υ p (VD ) σ + (VD ) 1 + 1 4 − η ) = ( n e 6.0 Ag φ i Divide: c V e σ nm ce σ + cn φAg + η u B 1 + np f J B nm 2 e 61.0 υ Ag φφ cn ⎛ ⎜1 + np ⎞ ⎟ ⎟ 1 − η u 1 = B i ⎜ nm ⎠ = η 1 + y u + D 4 c V f J e σ + ⎜ ⎜ ⎛ 1 + np ⎝ υ p σ (V )⎞ ⎟ = y → η u B B ⎝ nm ce σ + ⎠ ⎟ VD σ T (V D ) np υ p ∗ ε P σ + nm ce ⎛ n ⎞ * 2 15. 0 e ε υ Ag φφicn ⎜ ⎜1 + p ⎟ p B n ⎟ ⎝ m ⎠ y = V f J D υ pV σ (V ) ⎛ ⎜ np ⎞ ⎟ B B T D ⎜ ⎟ ⎝ nm ⎠ So: Given VD , JB ,Twalls → cn Geometry: fB ,φ,φi ,V , Ag Gas (U + , Uexc ,σ + ( ) E ,σ (E ), M ) exc n * Can conclude p ( ) → ε ( ) → η ( ) NOTE: m = mi JB Te p Te u Te so real parameter is m , nm e ηn not JB . Then given also A e (magnetic geometry) and m → Co → ε p → ε B Summary Inputs: Geometry and Gas Operating Additional Magentic Field Properties Parameters Parameter fB , fc ,... U + , Uexc VD , JB φ,φ i , V , Ag σ + ( ) E E ,σ exc ( ) Te → ε m Tw → cn Ae M 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 7 of 8

U. +s+Uw. -exc nm Up (D-5m)-a ne up o. o) 0.15epB4n1 r Ny miB C ) 1-exp[-C i(I-n +VD 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 8 of 8
U+ + ε m + Uexc σ exc np ce σ = nm p υ + VD (V − ε m)σ ( ) Uexc D σ + ↓ ne υ p σ (VD ) + ε T = VD ⎜ ⎜ ⎛σ T ⎞ ⎟ ⎟ * nm ce σ + ⎝ σ + ⎠VD 1 + np υ p σ + (VD ) nm ce σ + ↓ Y = ( ) n n VVV f J n n cAe m p DTp D B B m e n i gB p ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 15.0 1 + 2* συ ε φφυ ; η u = 1 + Y 1 → m = u Bi J e m η C o = ( ) φ σ n g i DT cA m 4 AeV → p ε [ ( )] o u p mC η ε −−− = 1exp1 * ↓ Bε = B p f ε + B c f f V D 16.522, Space Propulsion Lecture 16 Prof. Manuel Martinez-Sanchez Page 8 of 8
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《航天推进 Space Propulsion》(英文版)Lecture 11-12: SIMPLIFIED ANALYSIS OF ARCJET OPERATION.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 13-14: Electrostatic Thrusters.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 10: Electric Propulsion - Some Generalities on Plasma (and Arcjet Engines).pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 9: Some Examples of Small Solid.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 6: Hydrazine Decomposition: Performance Estimates.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 5: Chemical Thrusters for In-Space Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 4: Re-positioning in Orbits.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 1b: Review of Rocket Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 3: Approximate ∆V for Low-Thrust Spiral Climb.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 2: Mission Analysis for Low Thrust.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 1a: Mission Requirements for Space Propulsion.pdf
- 《空中交通运输系统》(英文版)chapter 20 business case.pdf
- 《空中交通运输系统》(英文版)chapter 14 avionic cert1.pdf
- 《空中交通运输系统》(英文版)chapter 14 avionic cert2.pdf
- 《空中交通运输系统》(英文版)chapter 16 rayleopoldbio.pdf
- 《空中交通运输系统》(英文版)chapter 12 humanfactors rev4.pdf
- 《空中交通运输系统》(英文版)chapter 12 misycumngsbio.pdf
- 《空中交通运输系统》(英文版)chapter 8 cargopration 3.pdf
- 《空中交通运输系统》(英文版)chapter 9 architecting.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 15: Thrust Calculation (Single Grid, Single Potential).pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 17: NOTES ON HALL THRUSTERS.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 23-25: COLLOIDAL ENGINES.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 22: A Simple Model For MPD Performance-onset.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 18: Hall Thruster Efficiency.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 21: Electrostatic versus Electromagnetic Thrusters.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 1 Lesson Objectives.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 4 propulsion.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 3 Spacecraft Power Systems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 5 THE ENVIRONMENT OF SPACE.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 2 orbital mech.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 7 Introduction to Optics part II.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 8 Adaptive Reconnaissance Golay Adaptive.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 6 Introduction to Optics part I.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 10 Electromagnetic Formation Flight.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 12 Objective and Outline.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 11 Objective & Approach.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 9 Attitude Determination and Control(ADCS).pdf
- 麻省理工学院:《Satellite Engineering》Lecture 15 costmodellec.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 14 Structures in Space Systems.pdf