麻省理工学院:《Satellite Engineering》Lecture 3 Spacecraft Power Systems

Spacecraft Power Systems David w. miller ohn keesee
Spacecraft Power Systems David W. Miller John Keesee

Electrical Power System EPS Power Energy Power Power Regulation Source Storage Distribution and Control
Electrical Power System Power Source Energy Storage Power Distribution Power Regulation and Control EPS

Power sources Primary batteries Radioisotope Secondary battery Thermionic converter Fuel cell Thermoelectric converter Regenerative fuel cell Photovoltaic Chemical dynamic Solar dynamic Nuclear Flywheel Storage Electrodynamics Tethers Propulsion-charged tether
Power Sources Primary Batteries Radioisotope Secondary Battery Thermionic converter Fuel cell Thermoelectric converter Regenerative fuel cell Photovoltaic Chemical dynamic Solar dynamic Nuclear Flywheel Storage Electrodynamics Tethers Propulsion-charged tether

Power Source applicability NUCLEAR THERMIONICS SOLAR DYNAMIC AND FUEL CELL PHOTOVOLTAIC 风 JCLEAR CHEMICAL DYNAMIC (APUS) A NUCLEAR THERMIONIC OR SOLAR DYNAMIC >》入 PHOTOVOLTAIC OR ISTOTOPE- THERMOELECTRIC PRIMARY MONTI YEAR BATTERIES 1 DAY 10 DAY 6810 0.1 0.1 100 10 10 HOURS pproximate ranges of application of different power sources
Power Source Applicability FUEL CELL CHEMICAL DYNAMIC (APUs) HOURS LOAD POWER (kW)NUCLEAR NUCLEAR THERMIONICS SOLAR DYNAMIC AND PHOTOVOLTAIC NUCLEAR THERMIONIC OR SOLAR DYNAMIC PHOTOVOLTAIC OR ISTOTOPE - THERMOELECTRIC PRIMARY MONTHS YEARS BATTERIES 1 DAY 0.1 0.1 1 10 100 1 1 2 2 4 6 810 3 6 12 10 100 10 3 10 4 10 5 10 DAYS Approximate ranges of application of different power sources

Design Space for rtGs 100 Nuclear reactors d104 5-Year Design Life 10 Chemical The 87-year half-life of Pu-238 results in 96% of the original heat output even after five years Sola Radioisotopes 10 1HOUR 1 DAY 1 MONTH 1 YEAR 10 YEARS Duration of use
Design Space for RTGs 5-Year Design Life % of Original Power Years 50 0 100 1 10 87 The 87-year half-life of Pu-238 results in 96% of the original heat output even after five years Electric - Power Level (kW) Duration of Use 10 MIN 1 HOUR 1 DAY 1 MONTH 1 YEAR 10 YEARS Chemical 10-1 100 101 102 103 104 105 106 107 Radioisotopes Nuclear reactors Solar

PI Ty rimary Battery iyI pes Silver zinc Lithium sulfur Lithium Lithium dioxide carbon thiony monofluoride chloride Energy density 130 220 210 275 (Wh/kg) Energy density 360 300 320 340 (W h/dm) Op Temp 0-40 -50-75 ?-82 40-70 (deg c) Storage Temp 0-30 0-50 0-10 deg c) Storage Life 30-90 days 10 2 et. 5 yr dry Open circuit 1.6 3.0 30 36 voltage(V/cell) Discharge 2.5 3.2 voltage(v/cell) Manufacturers Eagle Pitcher, Honeywell, Eagle Pitcher Duracell Yardley Power Conver Altus. ITT
Primary Battery Types Silver zinc Lithium sulfur dioxide Lithium carbon monofluoride Lithium thionyl chloride Energy density (W h/kg) 130 220 210 275 Energy density (W h/dm3) 360 300 320 340 Op Temp (deg C) 0-40 -50 – 75 ? – 82 -40 – 70 Storage Temp (deg C) 0 – 30 0 – 50 0 – 10 0 – 30 Storage Life 30-90 days wet, 5 yr dry 10 yr 2 yr 5 yr Open circuit voltage(V/cell) 1.6 3.0 3.0 3.6 Discharge voltage(V/cell) 1.5 2.7 2.5 3.2 Manufacturers Eagle Pitcher, Yardley Honeywell, Power Conver Eagle Pitcher Duracell, Altus, ITT

Silver zinc cells Wide use in industy High energy density, high discharge rate capal ability, fast response Short lifetime Vent gas during discharge Potentially rechargeable but few cycles
Silver Zinc Cells • Wide use in industry • High energy density, high discharge rate capability, fast response • Short lifetime • Vent gas during discharge • Potentially rechargeable but few cycles

Lithium cells Higher energy density than silver zinc Wide temperature range Low discharge rate(high internal Impedance) Rapid discharge may cause rupture Slow response
Lithium cells • Higher energy density than silver zinc • Wide temperature range • Low discharge rate (high internal impedance) – Rapid discharge may cause rupture • Slow response

Secondary battery Types Silver zinc Nickel cadmium Nickel hydrogen nergy densi 90 (Wh/kg) nergy densi 245 60 (Wh/dm) Oper Temp(deg C)10-20 0-20 0-40 Storage Temp(C) 0-30 0-30 0-30 Dry Storage life 5 yr Wet Storage life 30-90 days yr 2 Max cycle life 200 20.000 20.000 Open circuit 1.9 1.35 1.55 (V/cell) Discharge(V/cell) 1.8-1.5 1.25 1.25 Charge(V/cell) 2.0 145 1.50 Manufacturers Eagle-Pitcher Eagle-Pitcher Pitcher, Yardney Gates Aerospace Yardney, Gates Technical Prod Batteries Hughes
Secondary Battery Types Silver zinc Nickel cadmium Nickel hydrogen Energy density (W h/kg) 90 35 75 Energy density (W h/dm3) 245 90 60 Oper Temp (deg C) 0 – 20 0 – 20 0 – 40 Storage Temp (C) 0 – 30 0 – 30 0 – 30 Dry Storage life 5 yr 5 yr 5 yr Wet Storage life 30 – 90 days 2 yr 2 yr Max cycle life 200 20,000 20,000 Open circuit (V/cell) 1.9 1.35 1.55 Discharge (V/cell) 1.8 – 1.5 1.25 1.25 Charge (V/cell) 2.0 1.45 1.50 Manufacturers EaglePitcher,Yardney Technical Prod Eagle-Pitcher, Gates Aerospace Batteries Eagle-Pitcher, Yardney, Gates, Hughes

Nickel Cadmium cells long space heritage High cycle life, high specific energy Relatively simple charge control systems Battery reconditioning necessary to counteract reduction in output voltage after 3000 cycle es
Nickel Cadmium Cells • Long space heritage • High cycle life, high specific energy • Relatively simple charge control systems • Battery reconditioning necessary to counteract reduction in output voltage after 3000 cycles
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Satellite Engineering》Lecture 4 propulsion.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 1 Lesson Objectives.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 21: Electrostatic versus Electromagnetic Thrusters.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 18: Hall Thruster Efficiency.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 22: A Simple Model For MPD Performance-onset.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 23-25: COLLOIDAL ENGINES.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 17: NOTES ON HALL THRUSTERS.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 15: Thrust Calculation (Single Grid, Single Potential).pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 16: Ion Engine Performance. Brophy’s Theory DEFINITIONS:.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 11-12: SIMPLIFIED ANALYSIS OF ARCJET OPERATION.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 13-14: Electrostatic Thrusters.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 10: Electric Propulsion - Some Generalities on Plasma (and Arcjet Engines).pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 9: Some Examples of Small Solid.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 6: Hydrazine Decomposition: Performance Estimates.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 5: Chemical Thrusters for In-Space Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 4: Re-positioning in Orbits.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 1b: Review of Rocket Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 3: Approximate ∆V for Low-Thrust Spiral Climb.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 2: Mission Analysis for Low Thrust.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 5 THE ENVIRONMENT OF SPACE.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 2 orbital mech.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 7 Introduction to Optics part II.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 8 Adaptive Reconnaissance Golay Adaptive.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 6 Introduction to Optics part I.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 10 Electromagnetic Formation Flight.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 12 Objective and Outline.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 11 Objective & Approach.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 9 Attitude Determination and Control(ADCS).pdf
- 麻省理工学院:《Satellite Engineering》Lecture 15 costmodellec.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 14 Structures in Space Systems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 13 Trajectory Design For A Visible.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 16 Satellite Systems Software.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 17 Software Engineering for Satellites.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 18 Spacecraft Autonomy.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 19 Spacecraft Computer Systems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 20 Satellite Telemetry, Tracking and Control Subsystems.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 21 Satellite Communication.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 24 Ground System Design.pdf
- 麻省理工学院:《Satellite Engineering》Lecture 23 Spacecraft Thermal Control Systems.pdf