《空中交通运输系统》(英文版)chapter 14 avionic cert2

MIT ICAT Altimetry Standard Atmosphere Referenced 日29.92 inches of Hg 口3014mb Pressure Altitude O Altitude of Pressure in Std Atmosphere a Used above reference Flight Level (FL180 in US) Density Altitude a Altitude of density in Std Atmosphere Used for performance(TO) Barometric altitude a Estimated altitude corrected for surface pressure D MSL Altitude above Mean Sea Level (QNH) Q AGL Altitude above Ground Level(QFE) Radar Altitude(Cat I and Il Approaches u 5 cm radar- normally only below 3000ft (Terrain Noise Cabin Altitude(Pressurization)
MIT ICAT Altimetry y Standard Atmosphere Referenced 29.92 inches of Hg 3014 mb y Pressure Altitude Altitude of Pressure in Std Atmosphere Used above reference Flight Level (FL180 in US) y Density Altitude Altitude of density in Std Atmosphere Used for performance (TO) y Barometric Altitude Estimated altitude corrected for surface pressure MSL Altitude above Mean Sea Level (QNH) AGL Altitude above Ground Level (QFE) y Radar Altitude (Cat II and III Approaches) 5 cm radar - normally only below 3000ft (Terrain Noise) y Cabin Altitude (Pressurization)

MIT ICAT Airspeed Pneumatic Measurement based on Dynamic Pressure 口 Pitot and static Indicated Airspeed a Indicated on Instrument a Measurement of pressure on Aircraft(ie Load) O Used for structural operating limits Calibrated Airspeed a Pitot-Static Errors calibrated out a Used for Flight test and performance Groundspeed a Achieved speed over ground Mach number a Requires Static Air Temperature
MIT ICAT Airspeed y Pneumatic Measurement based on Dynamic Pressure Pitot and Static y Indicated Airspeed Indicated on Instrument Measurement of pressure on Aircraft (ie Load) Used for structural operating limits y Calibrated Airspeed Pitot-Static Errors Calibrated out Used for Flight Test and Performance y Groundspeed Achieved speed over ground y Mach Number Requires Static Air Temperature

② MIT ICAT Air Data Sensors · Pitot tube □ Heated for de-Ice Static Port 口 Location sensitive a Typically 1/3 Back on Fuselage on Conventional aircraft a Bilateral with crosstie to avoid Side Slip errors 口 Water drain Alpha vane □ Heated for De-|ce TAT Probe a Inertial Separator for Water □ Heated for De-|ce
MIT ICAT Air Data Sensors y Pitot Tube Heated for De-Ice y Static Port Location Sensitive Typically 1/3 Back on Fuselage on Conventional aircraft Bilateral with crosstie to avoid Side Slip Errors Water Drain y Alpha Vane Heated for De-Ice y TAT Probe Inertial Separator for Water Heated for De-Ice

MIT ICAT Temperature Static Air Temperature Ram rise Total Air Temperature
MIT ICAT Temperature y Static Air Temperature y Ram Rise y Total Air Temperature

MIT ICAT Integrated Air Data Systems Air Data Computer a Compensates out Static System Errors 口 Citation Example Air Data Heading and Reference Systems(ADHARS)
MIT ICAT Integrated Air Data Systems y Air Data Computer Compensates out Static System Errors Citation Example y Air Data Heading and Reference Systems (ADHARS)

MIT ICAT Heading Magnetic Compass u Variation(Magnetic Deviation Q Deviation(Magnetic materials) ◆DC9 Example Q Compass Card(Calibrated with Radios and Equip on) Flux Gate Compass O Electronic Magnetic Compass Normally in Tail for deviation Gyro compass 口 Precession a Slaved Flux Gate · Turn Coordinator 日( Rate Gyro)
MIT ICAT Heading y Magnetic Compass Variation (Magnetic Deviation Deviation (Magnetic materials) DC9 Example Compass Card (Calibrated with Radios and Equip on) y Flux Gate Compass Electronic Magnetic Compass Normally in Tail for deviation y Gyro Compass Precession Slaved Flux Gate y Turn Coordinator (Rate Gyro)

MIT ICAT Inertial Reference Unit Integrate acceleration from known position and velocity 口 Velocity 口 Position Need Heading 口 Gyros Mechanical Laser Can get Attitude a Artificial Horizon(PFD. HUD) Drift errors D IRU unusable in vertical direction (need baro alt) 日 flight Correction DME GPS Star Sighting for Space Vehicles Measurement Give Attitude also Z77 Analytical Redundancy
MIT ICAT Inertial Reference Unit y Integrate acceleration from known position and velocity Velocity Position y Need Heading Gyros Mechanical Laser y Can get Attitude Artificial Horizon (PFD. HUD) y Drift Errors IRU unusable in vertical direction (need baro alt) Inflight Correction DME GPS Star Sighting for Space Vehicles y Measurement Give Attitude Also y 777 Analytical Redundancy

MIT ICAT Communications Requirements a Communicate necessary information between formation elements and command node (lan and Air-Ground 口 Bandwidth 口Low- Observable? a Synchronous vs asynchronous Constraints 日 spectrum □ Antenna location echnologies 口 Radio ◆UHF,VHF,MMW a Optical ◆ Laser 口 Protocols
MIT ICAT Communications y Requirements Communicate necessary information between formation elements and command node (LAN and Air-Ground) Bandwidth Low-Observable? Synchronous vs asynchronous y Constraints Spectrum Antenna Location y Technologies Radio UHF, VHF, MMW Optical Laser Protocols

MIT ICAT COMMUNICATION Voice 日VHF( line of sight 118.0-1350Mhz a..025 spacing in US, 0.083 spacing in Europe) UHF ◆230-400Mhz( guess) HF(over the horizon) Optical (secure Datalink Q ACARS (VHF)-VDL Mode 2 Q VDL Modes 3 and 4(split voice and data) Q HF Datalink(China and Selcal Geosynchronous(Inmarsatt ◆ Antenna Requirements LEO and MEo Networks Software radios Antenna Requirements
MIT ICAT COMMUNICATION y Voice VHF (line of sight) 118.0-135.0 Mhz .025 spacing in US, 0.083 spacing in Europe) UHF 230-400 Mhz (guess) HF (over the horizon) Optical (secure) y Datalink ACARS (VHF) - VDL Mode 2 VDL Modes 3 and 4 (split voice and data) HF Datalink (China and Selcal) y Geosynchronous (Inmarsatt) Antenna Requirements y LEO and MEO Networks y Software Radios y Antenna Requirements

MIT ICAT Bandwidth Growth trend 1 Tbps 100 Gbps Potential RF Limit due 10 Gbps AFRL 1 Gbps BMDo◇ 100 Mbps g 10 Mbps 1 Mbl LINK 16 Source: DOD UAV 100 Kpbs Roadmap, 2000 o Kpbs ●LNK4 RF Data Link 1 Kpbs LINKs Optical Data Link 1950 1955 1960 1970 1990 2000 2010
MIT ICAT Bandwidth Growth Trend Source: DOD UAV Roadmap, 2000
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《空中交通运输系统》(英文版)chapter 16 rayleopoldbio.pdf
- 《空中交通运输系统》(英文版)chapter 12 humanfactors rev4.pdf
- 《空中交通运输系统》(英文版)chapter 12 misycumngsbio.pdf
- 《空中交通运输系统》(英文版)chapter 8 cargopration 3.pdf
- 《空中交通运输系统》(英文版)chapter 9 architecting.pdf
- 《空中交通运输系统》(英文版)chapter 8 cargopration 2.pdf
- 《空中交通运输系统》(英文版)chapter 7 bkresumfornsf.pdf
- 《空中交通运输系统》(英文版)chapter 7 mitmiltry ndco.pdf
- 《空中交通运输系统》(英文版)chapter 6 cargo econmics.pdf
- 《空中交通运输系统》(英文版)chapter 8 cargopration1.pdf
- 《空中交通运输系统》(英文版)chapter 4 mcmanuslactur2.pdf
- 《空中交通运输系统》(英文版)chapter 4 mcmanuslactur1.pdf
- 《空中交通运输系统》(英文版)chapter 3 formtechspnt.pdf
- 《空中交通运输系统》(英文版)chapter 2 greg larson2.pdf
- 《空中交通运输系统》(英文版)chapter 2 greg larson1.pdf
- 《空中交通运输系统》(英文版)chapter 1 murman_intro.pdf
- 麻省理工学院:《System Safety》week 5 Subsystem Hazard Analysis(SSHA).pdf
- 麻省理工学院:《System Safety》week 4 System Hazard Analysis.pdf
- 麻省理工学院:《System Safety》week 8 Human-Computer Interaction.pdf
- 麻省理工学院:《System Safety》week 7 Design for Safety.pdf
- 《空中交通运输系统》(英文版)chapter 14 avionic cert1.pdf
- 《空中交通运输系统》(英文版)chapter 20 business case.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 1a: Mission Requirements for Space Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 2: Mission Analysis for Low Thrust.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 3: Approximate ∆V for Low-Thrust Spiral Climb.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 1b: Review of Rocket Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 4: Re-positioning in Orbits.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 5: Chemical Thrusters for In-Space Propulsion.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 6: Hydrazine Decomposition: Performance Estimates.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 9: Some Examples of Small Solid.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 10: Electric Propulsion - Some Generalities on Plasma (and Arcjet Engines).pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 13-14: Electrostatic Thrusters.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 11-12: SIMPLIFIED ANALYSIS OF ARCJET OPERATION.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 16: Ion Engine Performance. Brophy’s Theory DEFINITIONS:.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 15: Thrust Calculation (Single Grid, Single Potential).pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 17: NOTES ON HALL THRUSTERS.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 23-25: COLLOIDAL ENGINES.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 22: A Simple Model For MPD Performance-onset.pdf
- 《航天推进 Space Propulsion》(英文版)Lecture 18: Hall Thruster Efficiency.pdf