电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 03 Statistical Detection Theory I

Statistical Detection Theory Statistical Detection Theory I Wenhui Xiong NCL UESTC whxiong@uestc.edu.cn
whxiong@uestc.edu.cn Statistical Detection Theory Statistical Detection Theory I Wenhui Xiong NCL UESTC

Outline Deterministic Approach Neyman-Person Theorem Receiver Operation Characteristics ●Bayesian Approach Minimum Probability of Error 。Bayes Risk Multiple Hypothesis Test whxiong@uestc.edu.cn 2
whxiong@uestc.edu.cn Deterministic Approach Neyman-Person Theorem Receiver Operation Characteristics Bayesian Approach Minimum Probability of Error Bayes Risk Multiple Hypothesis Test Outline 2

Neyman-Person Theorem (1/7) Detection is Hypothesis test from observations whxiong@uestc.edu.cn 3
whxiong@uestc.edu.cn Neyman-Person Theorem (1/7) 3 Detection is Hypothesis test from observations

Neyman-Person Theorem (1/7) Detection is Hypothesis test from observations Ho Nothing but noise Null hypo. whxiong@uestc.edu.cn 4
whxiong@uestc.edu.cn Neyman-Person Theorem (1/7) 4 Detection is Hypothesis test from observations H0 Nothing but noise Null hypo

Neyman-Person Theorem (1/7) Detection is Hypothesis test from observations Ho Nothing but noise Null hypo. H Something with noise Alternative hypo. whxiong@uestc.edu.cn 5
whxiong@uestc.edu.cn Neyman-Person Theorem (1/7) 5 Detection is Hypothesis test from observations H0 Nothing but noise Null hypo. H1 Something with noise Alternative hypo

Neyman-Person Theorem (1/7) Detection is Hypothesis test from observations Ho Nothing but noise Null hypo. Something with noise Alternative hypo. Goal:Infer from x[n],what is true.Ho or H whxiong@uestc.edu.cn 6
whxiong@uestc.edu.cn Neyman-Person Theorem (1/7) 6 Detection is Hypothesis test from observations H0 Nothing but noise Null hypo. H1 Something with noise Alternative hypo. Goal: Infer from x[n], what is true. H0 or H1

Neyman-Person Theorem (1/7) Detection is Hypothesis test from observations Ho Nothing but noise Null hypo. H Something with noise Alternative hypo. Goal:Infer from x[n],what is true.Ho or Hi Example Detect DC in WGN Ho cin]=wlnl Hy xIn]=A+wln] whxiong@uestc.edu.cn 7
whxiong@uestc.edu.cn Neyman-Person Theorem (1/7) 7 Detection is Hypothesis test from observations Example : Detect DC in WGN H0 x[n] = w[n] H1 x[n] = A + w[n] H0 Nothing but noise Null hypo. H1 Something with noise Alternative hypo. Goal: Infer from x[n], what is true. H0 or H1

NP theorem (2/7) Binary Hypo.Test:Ho or H1:one of them Happens for sure whxiong@uestc.edu.cn 8
whxiong@uestc.edu.cn NP theorem (2/7) Binary Hypo. Test: H0 or H1:one of them Happens for sure 8

NP theorem (2/7) Binary Hypo.Test:Ho or H1:one of them Happens for sure p(H;H):Prob.(decide H when Ho is true)False alarm p(Ho:H):Prob.(decide Ho when H is true)Miss Detection p(Ho:Ho):Prob.(decide Ho when Ho is true)Non-Detection p(HH):Prob.(decide H when H is true)Detection! whxiong@uestc.edu.cn 9
whxiong@uestc.edu.cn NP theorem (2/7) Binary Hypo. Test: H0 or H1:one of them Happens for sure 9 •p(H1 ;H0 ): Prob.(decide H1 when H0 is true) False alarm •p(H0 ;H1 ): Prob.(decide H9 when H1 is true) Miss Detection • p(H0 ;H0 ): Prob.(decide H0 when H0 is true) Non-Detection • p(H1 ;H1 ): Prob.(decide H1 when H1 is true) Detection!

NP theorem (2/7) Binary Hypo.Test:Ho or H1:one of them Happens for sure p(H;H):Prob.(decide H when Ho is true)False alarm p(Ho:H):Prob.(decide Ho when H is true)Miss Detection p(Ho:H):Prob.(decide Ho when Ho is true)Non-Detection p(H;H):Prob.(decide H when H is true)Detection! .Type I error:decide H when Ho is true:PrA Type II error:decide Ho when H is true:1-Pp Our Goal is to minimize error! whxiong@uestc.edu.cn 10
whxiong@uestc.edu.cn NP theorem (2/7) Binary Hypo. Test: H0 or H1:one of them Happens for sure 10 •p(H1 ;H0 ): Prob.(decide H1 when H0 is true) False alarm •p(H0 ;H1 ): Prob.(decide H9 when H1 is true) Miss Detection • p(H0 ;H0 ): Prob.(decide H0 when H0 is true) Non-Detection • p(H1 ;H1 ): Prob.(decide H1 when H1 is true) Detection! Our Goal is to minimize error! • Type I error: decide H1 when H0 is true: PFA •Type II error: decide H0 when H1 is true: 1-PD
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《中外新闻传播学史 History of Journalism and Communication of China and Foreign Countries》课程教学资源(教学大纲).pdf
- 运城学院:《广播电视概论》课程教学资源(教学大纲,打印版)播音与主持艺术.pdf
- 运城学院:《广播电视概论》课程教学资源(教学大纲,打印版)播音与主持艺术专升本.pdf
- 运城学院:《广播电视概论》课程教学大纲 Radio and television introduction(播音与主持艺术,打印版).pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第九章 广播电视综艺娱乐类节目.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第八章 广播电视谈话节目.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第七章 广播电视新闻类节目.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第六章广播电视传播的语言教案.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第五章 广播电视传播符号.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第四章 世界广播电视的体制与发展.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第三章_港澳台地区广播电视事业发展.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第二章_中国广播电视事业发展.pdf
- 运城学院:《广播电视概论》课程教学资源(电子教案,打印版)第一章 广播电视发展与现状.pdf
- 长沙医学院:人文传媒学院课程简介.pdf
- 上海交通大学:《公众表达》课程教学资源(PPT讲稿)非语言传播.ppt
- 上海交通大学:《公众表达》课程教学资源(PPT讲稿)说服性演讲.ppt
- 上海交通大学:《公众表达》课程教学资源(PPT讲稿)第四单元 综述能力训练.ppt
- 上海交通大学:《公众表达》课程教学资源(PPT讲稿)第六单元 主题演讲训练.ppt
- 上海交通大学:《公众表达》课程教学资源(PPT讲稿)第五单元 评述能力训练.ppt
- 上海交通大学:《公众表达》课程教学资源(PPT讲稿)第二单元 普通话语音常识与训练.ppt
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 04 Deterministic Signal.pdf
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 05 Random Signal.pdf
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 06 Statistical Detection Theory II.pdf
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 07 Maximum Likelihood Estimator(MLE).pdf
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 08 Least Square(LS).pdf
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)Chapter 09、10 Bayesian Approach.pdf
- 电子科技大学:《信号检测与估计 Signal Detection and Estimation》课程教学资源(课件讲稿)绪论(熊文汇).pdf
- 电子科技大学:《新媒体研究 New Media Studies》课程教学资源(教学大纲,主讲:韩洪).pdf
- 电子科技大学:《新媒体研究 New Media Studies》课程教学资源(课件讲稿,共五部分,主讲:韩洪).pdf
- 电子科技大学:《新闻学理论 Journalism Thoery》课程教学资源(教学大纲,詹恂).pdf
- 电子科技大学:《新闻学理论 Journalism Thoery》课程教学资源(课件讲稿,詹恂).pdf
- 运城学院:《新闻学概论》课程教学资源(教学大纲)Introduction to Journalism(负责人:贠琪).doc
- 《新闻学概论》课程教学资源(参考文献)列宁——党的组织和党的出版物.doc
- 《新闻学概论》课程教学资源(参考文献)马克思恩格斯——摩泽尔记者的辩护.doc
- 《新闻学概论》课程教学资源(参考文献)马克思——第六届莱茵省议会的辩论(第一篇论文).doc
- 《新闻学概论》课程教学资源(参考文献)马克思——对波拿巴的谋杀.doc
- 《新闻学概论》课程教学资源(参考文献)我们对于新闻学的基本观点(陆定一).doc
- 《新闻学概论》课程教学资源(参考文献)马克思——评普鲁士最近的书报检查令.doc
- 《新闻学概论》课程教学资源(参考文献)毛泽东在延安文艺座谈会上的讲话.doc
- 成都大学:文学与新闻传播学院汉语国际教育专业课程教学大纲(汇编).pdf