Flexible Online Task Assignment in Real-Time Spatial Data

ReVLDB 2017 DI Murich-Germany Flexible Online Task Assignment in Real-Time Spatial Data Yongxin Tong1, Libin Wang, Zimu Zhou2, Bolin Ding, Lei Chen, Jieping Ye5, Ke Xu 1 Beihang University 2 ETH Zurich 3 Microsoft research 4 The hong Kong University of Science and Technology 5 DiDi Research Microsoft 航空航 ETHzurich Researchi 香港科技大 THE HONG KONG UNIVERSITY OF CIENCE AND TECHNOLOGY O DiDi
Flexible Online Task Assignment in Real-Time Spatial Data Yongxin Tong 1 , Libin Wang1 , Zimu Zhou2 , Bolin Ding3 , Lei Chen4 , Jieping Ye5 , Ke Xu1 1 Beihang University 2 ETH Zurich 3 Microsoft Research 4 The Hong Kong University of Science and Technology 5 DiDi Research

Outline o Background and motivation ●Prob| em Statement o Our solutions 上 xperiments ●Conc| usion
Outline ⚫ Background and Motivation ⚫ Problem Statement ⚫ Our Solutions ⚫ Experiments ⚫ Conclusion 2

Outline o Background and Motivation ●Prob| em Statement o Our solutions 上 xperiments ●Conc| usion
Outline ⚫ Background and Motivation ⚫ Problem Statement ⚫ Our Solutions ⚫ Experiments ⚫ Conclusion 3

Real-Time Spatial Data Mobile Internet applications make real-time spatial data ubiquitous Intelligent transportation platforms [ DIDi ∪BER More than a journey Food delivery platforms grubHub yelp Spatial crowdsourcing platforms Gigal BOSTON taskrabbit 22 Life is busy. We can help
⚫ Mobile Internet applications make real-time spatial data ubiquitous ⚫ Intelligent transportation platforms ⚫ Food delivery platforms ⚫ Spatial crowdsourcing platforms Real-Time Spatial Data 4

Why Real-Time task assignment Task assignment is an important issue in many real-time Online-to-Offline(o20)platforms Type Application Issue Intelligent Assign proper drivers transportation (workers)to pick up U BER platforms passengers( tasks) Food delivery Assign proper deliverers platforms grubB (workers) to send food to happy eating users( tasks) Spatial crowdsourcing Gigwalke Assign micro tasks to platforms proper workers
⚫ Task assignment is an important issue in many real-time Online-to-Offline (O2O) platforms Why Real-Time Task Assignment Type Application Issue Intelligent transportation platforms Assign proper drivers (workers) to pick up passengers (tasks) Food delivery platforms Assign proper deliverers (workers) to send food to users (tasks) Spatial crowdsourcing platforms Assign micro tasks to proper workers 5

Existing Research Early research directly models the task assignment problem through the classical offline bipartite matching"problem, which tries to maximize the total number of the assignment Worker Task (1,8) w r2(3,6) r1(2,5 f4(65) 4 7(5,3.5) Ws(8,2) Edge: a worker can 6(4,1)W4(6,1) arrive at the location 012345678X of a task before the deadline of the task Kazemi et aL. Geocrowd: enabling query answering with spatial crowdsourcing In GIS 2012. H. To et al. A server-assigned spatial crowdsourcing framework In TASA 2015
⚫ Early research directly models the task assignment problem through the classical “offline bipartite matching” problem, which tries to maximize the total number of the assignment Existing Research L. Kazemi et al. Geocrowd: enabling query answering with spatial crowdsourcing. In GIS 2012. H. To et al. A server-assigned spatial crowdsourcing framework. In TASA 2015. Worker Task Edge: a worker can arrive at the location of a task before the deadline of the task. 6

Existing Research Early research directly models the task assignment problem through the classical offline bipartite matching " problem, which tries to maximize the total number of the assignment Task w2(1.8)w3(37) Worker r366,7) Cannot handle real-time scenarios where workers and tasks will dynamically appear Ws(8,2) Edge: a worker can 6(4,1)W4(6,1) arrive at the location 012345678X of a task before the deadline of the task Kazemi et aL. Geocrowd: enabling query answering with spatial crowdsourcing In GIS 2012. H. To et al. A server-assigned spatial crowdsourcing framework In TASA 2015
⚫ Early research directly models the task assignment problem through the classical “offline bipartite matching” problem, which tries to maximize the total number of the assignment Existing Research L. Kazemi et al. Geocrowd: enabling query answering with spatial crowdsourcing. In GIS 2012. H. To et al. A server-assigned spatial crowdsourcing framework. In TASA 2015. Worker Task Edge: a worker can arrive at the location of a task before the deadline of the task. Cannot handle real-time scenarios where workers and tasks will dynamically appear ! 7

Existing Research Recent research uses "online bipartite matching'"' to model the real-time task assignment problem When a task/worker appears, the task assignment is performed immediately and irrevocably A rigorous assumption: once a worker appears on the platform, the worker can only wait in place tlil a task is assigned to him/her Y Tong et al. Online Mobile Micro-Task Allocation in Spatial Crowdsourcing. In ICDE2016
⚫ Recent research uses “online bipartite matching” to model the real-time task assignment problem ⚫ When a task/worker appears, the task assignment is performed immediately and irrevocably Existing Research Y. Tong et al. Online Mobile Micro-Task Allocation in Spatial Crowdsourcing. In ICDE2016. A rigorous assumption: once a worker appears on the platform, the worker can only wait in place tlil a task is assigned to him/her 8

9 Existing Research: An Example 9:009:009:019:019:029:039:039:039:049:059:069:079:08 w1 T 12 W3 w4 15 w7 75 5 Wi(1, 6) Each taxi can move one unit distance per minute 012345678X Dr= 2min and dw=10min
1 2 3 4 5 1 2 3 4 5 0 X Y 6 7 8 6 7 8 Existing Research: An Example 𝒘𝟏(𝟏,𝟔) 𝒘𝟏 𝑫𝒓 = 𝟐min and 𝑫𝒘 = 𝟏𝟎min Each taxi can move one unit distance per minute 9

Existing Research: An Example 9:009:0019:019:019:029:039:039:039:049:059:069:079:08 w1 T1 12 W3 w4 15 w7 75 Deadline constraint: If a taxi is in the n16 dotted circle, it can arrive at the position r1(25) of the passenger before her/his deadline 012345678X Dr= 2min and dw=10min
1 2 3 4 5 1 2 3 4 5 0 X Y 6 7 8 6 7 8 Existing Research: An Example 𝒘𝟏(𝟏,𝟔) 𝒘𝟏 𝒓𝟏(𝟐, 𝟓) 𝒓𝟏 Deadline constraint: If a taxi is in the dotted circle, it can arrive at the position of the passenger before her/his deadline 𝑫𝒓 = 𝟐min and 𝑫𝒘 = 𝟏𝟎min 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《项目成本管理》课程教学资源(PPT课件讲稿)质量管理计划(主讲:周立新).ppt
- Efficient Algorithms for Optimal Location Queries in Road Networks.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿,第三版)Chapter 04 网络层 Network Layer.ppt
- 《电子商务概论》课程教学资源(PPT课件讲稿)第7章 电子商务与物流.ppt
- 《网络算法学》课程教学资源(PPT课件讲稿)第四章 原则的运用.ppt
- 清华大学:计算机科学与技术(PPT讲稿)组播 Multicast.pptx
- 《机器学习》课程教学资源(PPT课件讲稿)第七章 贝叶斯分类器 MACHINE LEARNING.pptx
- 西安电子科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)第五章 传输层.pptx
- 清华大学:不确定型决策(PPT讲稿)Decision Making under Uncertainty.pptx
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,4th edition)Chapter 1 Introduction.ppt
- 《神经网络和模糊系统》课程教学资源(PPT讲稿)第四章 突触动力学、非监督学习.ppt
- 南京航空航天大学:《C++》课程电子教案(PPT课件讲稿)第4章 类的高级部分.ppt
- 西安电子科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)概述(主讲:岳鹏).ppt
- 计算机语言的学科形态与发展历程(PPT课件讲稿).ppt
- 西安电子科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)第一章 概述(主讲:马涛).pptx
- 北京航空航天大学:动态拼车服务中的高效插入操作(PPT讲稿)An Efficient Insertion Operator in Dynamic Ridesharing Services.pptx
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第三章 流水线技术.pptx
- 《网络算法学》课程教学资源(PPT课件讲稿)第二部分 端节点算法学 第五章 拷贝数据.ppt
- 中国科学技术大学:《数值分析》课程教学资源(PPT课件讲稿)第1章 插值.ppt
- 中国科学技术大学:《算法基础》课程教学资源(PPT课件讲稿)第四讲 递归和分治策略(主讲人:吕敏).pptx
- 《机器学习》课程教学资源(PPT课件讲稿)第10讲 决策树.ppt
- 《物联网技术导论》课程教学资源(PPT讲稿)Continuous Scanning with Mobile Reader in RFID Systems - an Experimental Study.pptx
- 西安电子科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)第六章 应用层.pptx
- 沈阳理工大学:《计算机网络技术及应用》课程教学资源(PPT课件讲稿)第一章 互联网与网站 Interent & Website(主讲:廉哲).ppt
- 香港科技大学:Transaction Management、Serializability Theory and Concurrency Control、Lock-Based Protocols、Deadlock Problems、Recovery.ppt
- 《大学计算机基础》课程电子教案(PPT教学课件)第5章 多媒体技术基础.ppt
- 中国科学院:超级计算平台Linux初级培训(PPT讲稿,2009.11).ppt
- Routing in Vehicular Ad Hoc Network(PPT课件讲稿).ppt
- Linux操作系统初级培训(PPT讲稿)DSC认证培训体系.ppt
- Linux操作系统使用(PPT讲稿,简明基础教程,共七章).ppt
- 香港科技大学:Overviewof the Internet of Things(IoTs,PPT课件讲稿).ppsx
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第3章 最简单的C程序设计.ppt
- 清华大学出版社:《C程序设计》课程PPT教学课件(第三版)第二章 程序的灵魂——算法.ppt
- 《数据库原理》课程教学资源(PPT课件讲稿)第五章 数据库的存储结构.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第六章 句法结构模式识别.ppt
- 中国科学技术大学:《并行计算 Parallel Computing》课程教学资源(PPT课件讲稿)图论补充内容.pptx
- 中央电大:《计算机组成原理》课程教学资源(PPT课件讲稿)教学辅导.ppt
- 《网站建设》课程教学资源(PPT课件讲稿)第五章 Javascript脚本语言.ppt
- 安徽工贸职业技术学院:《计算机组装与维护》课程教学资源(PPT课件讲稿)项目四 搭建微型计算机软件系统.ppt
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 07 Mean-shift and Cam-shift.pptx