《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 07 Mean-shift and Cam-shift

Image processing and computer vision Chapter 7 Mean-shift and cam-shift Ref o[1] Dorin Comaniciu, Peter Meer, "Mean Shift: A Robust Approach Toward Feature Space Analysis"Volume 24, Issue 5(May 2002),IEEE Transactions on Pattern Analysis and Machine Intelligence e[2]web. missouri. edu/hantx/ECE8001/notes/Lect7 mean shift. pdf Camshift vod
Image processing and computer vision Chapter 7: Mean-shift and Cam-shift Ref ⚫[1] Dorin Comaniciu, Peter Meer,"Mean Shift: A Robust Approach Toward Feature Space Analysis"Volume 24 , Issue 5 (May 2002),IEEE Transactions on Pattern Analysis and Machine Intelligence ⚫[2] web.missouri.edu/~hantx/ECE8001/notes/Lect7_mean_shift.pdf Camshift v9d 1

INtroduction Kernel density I Kernel choices I Peak finding I Mean-shift 1 Cam-shift What is Mean-shift? Find the peak of a probability function by the change of the mean of the data Applications Non-rigid object tracking Segmentation Camshift vod
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift What is Mean-shift? • Find the peak of a probability function by the change of the mean of the data • Applications: – Non-rigid object tracking – Segmentation Camshift v9d 2

INtroduction Kernel density I Kernel choices I Peak finding I Mean-shift 1 Cam-shift Applications: segmentation of regions of images in a movie Use color to segment the image into logical regions for analysIS. If the regions are moving, mean-shift is useful Camshift vod .https://www.youtube.com/watch?v=rdtun7a6h08
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Applications: segmentation of regions of images in a movie • Use color to segment the image into logical regions for analysis. • If the regions are moving , mean-shift is useful. Camshift v9d 3 •https://www.youtube.com/watch?v=rDTun7A6HO8

INtroduction Kernel density I Kernel choices I Peak finding I Mean-shift 1 Cam-shift Application: tracking non-rigid object Human tracking http.://ww.youtube.com/watch?v=zltjpfpp9hy Camshift vod
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Application: tracking non-rigid object • Human tracking Camshift v9d 4 http://www.youtube.com/watch?v=zLtjPfPP9HY

INtroduction Kernel density I Kernel choices I Peak finding I Mean-shift 1 Cam-shift Intuition: find the mode by mean shift Target: Find the modes (peaks) in a set of sample data The mode of a continuous probability distribution is the peak. There may be multiple peaks The method used is called mean -shift MIX By finding the shift of the mean, we can find the tp mode (peak) It can be used to segment an image into logical regions.e.g. within each region, the color is the same) Camshift vod 5
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Intuition: find the mode by mean-shift • Target : Find the modes (peaks) in a set of sample data. – The mode of a continuous probability distribution is the peak. – There may be multiple peaks. • The method used is called mean-shift. – By finding the shift of the mean, we can find the mode (peak) • It can be used to segment an image into logical regions. (e.g. within each region, the color is the same.) Camshift v9d 5

INtroduction Kernel density I Kernel choices I Peak finding I Mean-shift 1 Cam-shift First we need to understand the Probability density Function PDF We use Kernel density estimation to find PDF Obtain the probability function from samples Camshift vod 6
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift First we need to understand the Probability Density Function PDF We use Kernel density estimation to find PDF Obtain the probability function from samples Camshift v9d 6

Introduction KKernel density Kernel choices I Peak finding I Mean-shift I Cam-shift Motivation for Kernel density estimation to find pdf The formula(parametric form) of the PDf (probability density function)is difficult to find Use sampling method to estimate the p.D.f That means: Gaussian(a parametric form with mean, standard deviation etc. is easy to use) but it is too simple to model real life problems. PDF(X) K/ Too simple to model o onaL HR real life problems X KN(x=ce An irregular shape pd, the distribution Gaussian distribution Is difficult to model using parameters Camshift vod use non-parametric methods instead
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Motivation for Kernel density estimation to find PDF • The formula (parametric form) of the PDF (probability density function) is difficult to find. • Use sampling method to estimate the P.D.F. • That means: Gaussian ( a parametric form with mean , standard deviation etc., is easy to use), but it is too simple to model real life problems. 2 || || 2 1 ( ) x N K x c e − = Camshift v9d 7 Gaussian distribution An irregular shape PDF, the distribution Is difficult to model using parameters --use non-parametric methods instead PDF(x) 0 x Too simple to model real life problems

IntroductionKKernel density Kernel choices |Peak finding/Mean-shiftICam-shift Example Outbreak of flu in a year How do you model this Pdf? CUHK Clinic Patients Number 100+ Per day 3 9 12 month Camshift vod 8
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Example • Outbreak of flu in a year • How do you model this PDF? Camshift v9d 8 month CUHK Clinic Patients Number Per day 3 6 9 12 100

IntroductionKKernel density Kernel choices |Peak finding/Mean-shiftICam-shift Kernel density estimation KDE Demo mei Density Estm Dataset 0waBa们a钟(动 https://courses.cs.ut.ee/demos/kernel-density-estimation/ https:/en.wikipedia.org/wiki/kerneldensityestimation Camshift vod 9
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift Kernel density estimation KDE Demo • Camshift v9d 9 https://courses.cs.ut.ee/demos/kernel-density-estimation/ https://en.wikipedia.org/wiki/Kernel_density_estimation

Introduction KKernel density Kernel choices I Peak finding I Mean-shift I Cam-shift kernel density distribution function K is a function o be explained (see slide 19) The general form of a kernel x-xi x)三 density distribution function ∑k The Kernel (k) has many n= number of samples choices h window radius Epanechnikov d=dimension Uniform x=target position Normal (Gaussian i- Samples C= normalization constant Camshift vod
Introduction | Kernel density | Kernel choices | Peak finding | Mean-shift | Cam-shift kernel density distribution function • The general form of a kernel density distribution function • The Kernel (K) has many choices – Epanechnikov – Uniform – Normal (Gaussian) C normalization constant samples target position dimension window radius number of samples ( ) ˆ 1 = = = = = = − = = i n i i h d x xd h n h x x K nhC f x Camshift v9d 10 K is a function: To be explained (see slide19)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 安徽工贸职业技术学院:《计算机组装与维护》课程教学资源(PPT课件讲稿)项目四 搭建微型计算机软件系统.ppt
- 《网站建设》课程教学资源(PPT课件讲稿)第五章 Javascript脚本语言.ppt
- 中央电大:《计算机组成原理》课程教学资源(PPT课件讲稿)教学辅导.ppt
- 中国科学技术大学:《并行计算 Parallel Computing》课程教学资源(PPT课件讲稿)图论补充内容.pptx
- 《编译原理》课程教学资源(PPT课件讲稿)第六章 句法结构模式识别.ppt
- 《数据库原理》课程教学资源(PPT课件讲稿)第五章 数据库的存储结构.ppt
- 清华大学出版社:《C程序设计》课程PPT教学课件(第三版)第二章 程序的灵魂——算法.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第3章 最简单的C程序设计.ppt
- 香港科技大学:Overviewof the Internet of Things(IoTs,PPT课件讲稿).ppsx
- Linux操作系统使用(PPT讲稿,简明基础教程,共七章).ppt
- Linux操作系统初级培训(PPT讲稿)DSC认证培训体系.ppt
- Routing in Vehicular Ad Hoc Network(PPT课件讲稿).ppt
- 中国科学院:超级计算平台Linux初级培训(PPT讲稿,2009.11).ppt
- 《大学计算机基础》课程电子教案(PPT教学课件)第5章 多媒体技术基础.ppt
- 香港科技大学:Transaction Management、Serializability Theory and Concurrency Control、Lock-Based Protocols、Deadlock Problems、Recovery.ppt
- 沈阳理工大学:《计算机网络技术及应用》课程教学资源(PPT课件讲稿)第一章 互联网与网站 Interent & Website(主讲:廉哲).ppt
- 西安电子科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件讲稿)第六章 应用层.pptx
- 《物联网技术导论》课程教学资源(PPT讲稿)Continuous Scanning with Mobile Reader in RFID Systems - an Experimental Study.pptx
- 《机器学习》课程教学资源(PPT课件讲稿)第10讲 决策树.ppt
- Flexible Online Task Assignment in Real-Time Spatial Data.pptx
- 华中科技大学:《操作系统原理》课程电子教案(PPT教学课件)第一章 绪论Principles of Operating System(主讲:郑然).ppt
- 西安电子科技大学:《信息系统安全》课程教学资源(PPT课件讲稿)第五章 操作系统安全、第六章 网络安全、第七章 应用安全、第八章 管理安全.ppt
- 武汉大学:《数据库系统概论》课程教学资源(PPT课件讲稿)第4章 关系数据库理论.ppt
- 并行算法概述(PPT课件讲稿).pptx
- 《计算机网络》课程教学资源(PPT讲稿)项目1 构建简单互连网络(Windows XP).ppt
- 《C语言程序设计》课程电子教案(PPT教学课件)第5章 选择控制结构.ppt
- 上海交通大学:《软件工程》课程教学资源(课件讲稿)07 测试.pdf
- 南京大学:人工智能课程概况(PPT讲稿)从图灵奖看人工智能创新性思维的发展.pdf
- 非线性编辑软件(PPT课件讲稿)Premiere Pro.pptx
- Java平台企业版(J2EE)原理(PPT讲稿).ppt
- 北京师范大学现代远程教育:《计算机应用基础》课程教学资源(PPT课件讲稿)第4章 文字处理Word.pptx
- 广东工业大学:数据挖掘(PPT讲稿).ppt
- 分布式查询处理 Distributed Query Processing(PPT讲稿)查询处理、查询分解与定位.ppt
- 多媒体技术:多媒体信息处理(Multimedia Computing)PPT讲义.ppt
- 高校数字化图书馆知识服务网络共建共享方案的建议(王明亮).ppt
- Linux操作系统下C语言编程入门(电子书).pdf
- 北京大学精品课程:浅谈软件项目管理(陈长城).pdf
- 河南中医药大学信息管理与信息系统教研室:第十四章 电子政务(刘俊娟).pptx
- 人工智能和模式识别与医学专家系统(PPT课件讲稿).ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)引言、背景概述.ppt