同济大学:《结构力学》课程教学资源(教案讲稿,打印版)11 Slope Deflection Method(转角变位移法)(and Other Equilibrium Methods)

Chapter 11. Slope Deflection Method(转角变位移法) (and Other Equilibrium Methods). 月大学 自 土工程学院 TONGJI UNIERSITY 11.1 Nature of equilibrium methods Equilibrium The fundamental equations are methods the equations of equilibr Compatibility (平衡法) method(协调 法) Stiffness The fundamental equations are method (刚度法) composed of stiffness q Flexibility method(柔度 法) Displaceme The solution of the fund aa nt method (位移法) equations are displacemente Force method( 力法) 月大学 土木工程学院 TONGUNIVERSITY

Procedure of equilibrium methods The original structure Restrain each structure displacement component The number of restraints qives the degree of A kinematically kinematic indeterminacy determinate primary structure The individual members are under load in the restrained position Relax the artificially imposed restraints Equilibrium must be satisfied for each The original structure displadement degree of freedom. Member force-deformation relationship A simple problem Member force- deformation relationship N=EAA B P EA Y=0 EA N,= equilibrium xd=P EAx equation L 冠月海大学 土床工程学院

11.2 The slope deflection equation The slope deflection method for rigid- jointed beam and frame structure. Accounting for flexural deformation. Ignoring axial and shear deformation. X X Slope deflection equation <member force-deformation relationship @同傍大学目土本红程幸院 The slope deflection △8 MABl2 MRAP2 Pabxp equation 3EI 6EI 0A-中AB= MAnl MaAl Pabxe Deformed 3E1 6EI 2EIl configuration y 中AB BC VAB Moment diagrams /3 3 1/3 同僑大学 土本工程学院 6

The slope 0-AB= MAR!MRAL Pabxg deflection 3E1 6EI 2EIl M过+M然 Pabx equation 6EI 3EI 2Ell continued The slope deflection equation MA8-Member-end moment 2E1 MAB (20+0-3)+FEMAm FEMAB-Fixed-end moment M2)FEM n-near end M=2EK(20+-3+FEM f-far end Krstiffness factor 4EI。,2E 。6E1 Knr=//,unit stiffness; Mg8+ 0- 24 stiffness per unit length; 线刚度 以份不子闺人 Fixed-end moments(固端弯矩) Loading MAB MBA -Pab2 +Pa2b -w2 +w2 12 2 +w2 20 晋-+) +b(2a-b) M +ab-告 国二

11.3 interpretation of the slope deflection equation Transverse displacement, member distortion M=4·9, M=24.9 /2 Coupling of a stiffness term and a displace-ment quantity 4EI FEMnf 9 11.4 Beam problems b /constant Mab 2EKab(20 +0p)+FEMab Mba 2EKab(20p+0a)+FEMba Mbc 2EKbe(20p+0c) Mcb=2EKc(20。+0b) ∑M。=Mb=0 4EKab0 2EKab0=-FEMab ∑M6=Mba+Mbc=0 2EKab0.+(4EKab4EKbc)8。+2EK0。=-FEMbo ∑Me=Mcb=0 2EKbe0。+4EKe0。=0 同榜大学 土床工程学院 10

11.5 frame problems 一V= 同停大学 目 土床工程学院 11 FEMab Mba 2EKab 20。-3号》 FEM Mc=2EKbc(20。+0.) Meb 2EKbe(20c+0g) (EK+4EKc) 2EKpe -6EKab -Pa2b 2EKbe 4EKbc 0 0 -6EK业 0 12EKab Pa"(l 2b) 2 下 4EK+EK)+2EK-EK =-FEMbe 2EK0+4EKbc0c =0 6EKab0 -12EKab =-FEMab FEMba Ma Pb-Pl

Procedure of the slope deflection method The displacement boundary conditions A qualitative sketch of the deflected structure The compatibility requirements The unknown displacement quantities A slope deflection equation for each member end A rotational freedom involving the An equilibrium equation for moments acting on the joint each kinematic dof A sway freedom involving column shears and moments The equilibrium equations in terms of unknown displ. Determination of the unknown displacements End moments coming from the slope deflection equation 同榜大学 土本工程学院 13 Example 11.2 Determine the end moments and the maximum bending stress for the structure below,if point b settles 0.03m. E=200×10Pa=200GN/m2:1=2000×10-6m:d=0.3 m(beam depth) 0.03m b ab=0.03/10=0.003 c=-0.003 Compatibility and Boundary Conditions 0 and 0 are the two kinematic degrees of freedom. Moment Equations M=2EK(20+0-3)+FEM Kb=K=K=200X10-6m=200×10-7m 10m EK=200GN× m×200×107m3=40MN.m 14

议 =0 0.03m 6EKψab=6×40MN.m×0.003=720kN.m Mb=2EK(0b)-720 Equilibrium Equations Mba Mic =0 Mba=2EK(20b)-720 Mcb=0 Mbc=2EK(20b+0)+720 8EK0b+2EK0。=0 Mb=2EK(20。+0b)+720 2EK0。+4EK0.=-720 Final Moments Mb=2(51.4)-720=-617.2kN·m 15 Ma=451.4)-720=-514.4kN.m Example 11.310 50 FEMb=-20X10×52 =-22.2'-k 152 FEM=+20X02×5-+444-t n 20 152 FBM=二10X8X12=-288-+ 202 FEMb=+10×82X2=+192-k 202 81 5 FEMed=FEMdc=0 My=2EKy (20+0-3+FEM Kab=Kod =1/15=K;Kic 12/20=41 120=3K △ab=4cd=4 u或6=音产号 鼎0 90 吃e=0 程学脱 16

100 50 Me=-(50×5)=-250'-k (from statics) Mab=2EK(0。-3)-22.2 20 Ma=2EK(20。-3)+44.4 M=2E·3K(20b+0)-288 汤 n 8 20 5 Mb=2E·3K(20e+6b)+192 Mcd=2EK(20。-3ψ) Equilibrium Equations Mk=2EK(0e-3ψ) At joint b: Msa Moc =0 250h At joint c: M+M-250=0 学院 17 Columns ab and cd: 5 204 10 一H Mab M from consideration of the entire structure, H。+Ha=20 .'.Mab Mpe Mca+Mac =-200 Substitution of moment equations into the equilibrium equations yields 6 -61EK06l [243.6 6 16 EKO。 58.0 -6 24 EK业 222.2 18

Slope-deflection method,for hand calculation. The concept of kinematic indeterminacy The loads applied directly at the joints and those applied along the member lengths. 同橋大学 土水工相学院 19 Part ll.Simplification and regularization of the slope deflection method EI 0n≠0, 0=0 △r=0,FEMpt?=0 .M=- 0n=0,0r≠0 △t=0,FEMf=0 6 6n=0,0=0 △nr≠0,FEMot=0 M=FEn】 0n=0,0,=0 △nf=0,FEMnt≠0 nl1ow=4号n+2g财2a1+FEMn 学院
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)10 Method of Consistent Deformations(协调变形法)(and Other Compatibility Methods).pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)06 Influence Lines(影响线)and Maximum Load Effects..pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)09 More Basic Concepts of Structural Analysis.pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)08 Elastic Deflections(弹性变形)of Beam and Frame Structures.pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)07 Elastic Deflections(弹性变形)of Trusses and Frameworks..pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)05 Member Forces in Beams(梁)and Frames.pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)04 Member Forces in Planar Trusses平面桥架()and Space Frameworks(空间构架).pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)03 Reactions(反力).pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)02 Kinematic(运动学)analysis of structures.pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)01 Introduction.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 08 Generalized SDOF Systems.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 07 Frequency Domain Method.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 06 Numerical Evaluation of Dynamic Response.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 05 Response to Arbitrary, Step , and Pulse Excitations.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 04 Response to harmonic and periodic excitations - Application.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 03 Response to Harmonic and Periodic Excitations.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 02.pdf
- 同济大学:《结构动力学》课程教学资源(教案讲义)Lecture 01 Introduction of Structural Dynamics(负责人:陈隽).pdf
- 《力学》课程教学资源(试卷习题)美国物理试题与解答(第1卷)力学.pdf
- 长沙理工大学:《力学》课程教学资源(大纲教案)教学大纲 Mechanics.pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)12 Moment Distribution Method(弯矩分配法).pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)13 Matrix Displacement Method(矩阵位移法).pdf
- 同济大学:《结构力学》课程教学资源(教案讲稿,打印版)16 Dynamic analysis of structures.pdf
- 吉林大学:《土质学与土力学》课程教学资源(讲义,共十一章,负责人:郑孝玉).docx
- 科学出版社:现代力学丛书《高等断裂力学》书籍PDF电子版 Advanced Fracture Mechanics(2009版,共14章,主编:王自强、陈少华).pdf
- 国家自然科学基金重大项目:《材料的损伤断裂机理和宏微观力学理论》书籍PDF电子版(共六章,清华大学出版社,主编:黄克智、肖纪美).pdf
- 《断裂力学》课程教学资源(书籍教材)断裂力学教程电子版(PDF电子书,共四章).pdf
- 清华大学出版社:《损伤力学》书籍PDF电子版(PDF电子书,无图版,共七章,主编:余寿文).pdf
- 铁摩辛柯系列丛书(Timoshenko)简介 - MEMORIAL RESOLUTION STEPHEN P. TIMOSHENKO(187-1972).pdf
- 铁摩辛柯系列丛书(Timoshenko)Helical structure of the waves propagating in a spinning Timoshenko beam.pdf
- 铁摩辛柯系列丛书(Timoshenko)Timoshenko - Theory of elastic stability, 2e.pdf
- 铁摩辛柯系列丛书(Timoshenko)Timoshenko - Theory of Plates and Shells, 2e.pdf
- 铁摩辛柯系列丛书(Timoshenko)弹性稳定理论(第二版,中文版,共十一章).pdf
- 铁摩辛柯系列丛书(Timoshenko)铁摩辛柯《材料力学》中文版PDF电子书(共十一章).pdf
- 铁摩辛柯系列丛书(Timoshenko)科学出版社:《板壳理论》电子书(铁摩辛柯、沃诺斯基,中文版,共十六章).pdf
- 铁摩辛柯系列丛书(Timoshenko)Stephen Prokofievitch Timoshenko, 1878-1972.pdf
- 铁摩辛柯系列丛书(Timoshenko)Theory of Elasticity - TIMOSHENKO.pdf
- 铁摩辛柯系列丛书(Timoshenko)Timoshenko-RSmemorial.pdf
- 铁摩辛柯系列丛书(Timoshenko)板壳理论 - Timoshenko[美]S.铁摩辛柯S.沃诺斯基.pdf
- 铁摩辛柯系列丛书(Timoshenko)铁摩辛柯《工程中的振动问题》书籍PDF电子版(共五章).pdf