温州大学:《高等代数》课程教学资源(PPT课件)第三章 线性方程组(3.2)n维向量空间

§3.2n维向量空间
§3.2 n维向量空间

、向量空间的定义和例子 向量与向量空间对我们并不陌生,在解几中,我们已经讨 论过二维和三维向量空间中的向量 在那里,两个向量相加可以按平行四边形法则相加,若向 量用坐标表示,则两个向量相加转化为对应坐标相加,数与向 量相乘变为数与向量的每个坐标相乘,由此可抽象出一般向量 的定义。 定义3.2.1:数域F上一个n维向量就是由F中n个数组成的 有序数组: 1,a2,…,an 其中a称为向量的第个分量 几何上的向量是n维向量的特殊情况,虽然η维向量当n>4 时没有直观的几何意义,但仍然把它称为向量。一方面它包含 通常的向量作为其特例,另一方面它与通常的向量有许多共同 的性质。本课程常常用小写希腊字母α,β,V,表示向量。有了 向量,一个方程a1x+a12x2+…+ ax=b就可以用一个n+1 第三章线性方程组
第三章 线性方程组 一、向量空间的定义和例子 向量与向量空间对我们并不陌生,在解几中,我们已经讨 论过二维和三维向量空间中的向量。 在那里,两个向量相加可以按平行四边形法则相加,若向 量用坐标表示,则两个向量相加转化为对应坐标相加,数与向 量相乘变为数与向量的每个坐标相乘,由此可抽象出一般向量 的定义。 定义3.2.1:数域F上一个n维向量就是由F中n个数组成的 有序数组: (a a a 1 2 , , , n ) 其中 i a 称为向量的第i个分量。 几何上的向量是n维向量的特殊情况,虽然n维向量当n>4 时没有直观的几何意义,但仍然把它称为向量。一方面它包含 通常的向量作为其特例,另一方面它与通常的向量有许多共同 的性质。本课程常常用小写希腊字母α,β,γ,…表示向量。有了 向量,一个方程 i i in n i 1 1 2 2 a x a x a x b + + + = 就可以用一个n+1

元向量来表示:(an2a2…an2b) 向量的相等:如果两个n维向量a=(a1,a2…an),B=(b,b2…b 的对应分量都相等,即a=b,i=1,2,…n,则 称这两个向量相等,记为a=B 向量的和:向量y=(a1+b,a2+b2…an+b)称为向量 C=(a12a2 a)与B=(b,b2…,b)的和,记为r=a+阝。 零向量:分量全为零的n维向量:(030…0)称为零向量。 负向量:向量(a1a2…称为向量a=(a2a2…an)的负向 量,记为-α 向量的数量乘积:设∝=(aa2…an),k∈F,则称向量 (ka1,ka2,…,kan)为向量a与数k的数量乘积, 记为kQ。 向量的减法:aβ=a+(β)。 第三章线性方程组
第三章 线性方程组 元向量来表示: (a a a b i i in i 1 2 , , , , ) 向量的相等:如果两个n维向量 = = (a a a b b b 1 2 1 2 , , , , , , , n n ) ( ) 的对应分量都相等,即 , 1, 2, . i i a b i n = = ,则 称这两个向量相等,记为 = 向量的和:向量 = + + + (a b a b a b 1 1 2 2 , , , n n ) 称为向量 = (a a a 1 2 , , , n ) 与 = (b b b 1 2 , , , n ) 的和,记为 r=α+β。 零向量:分量全为零的n维向量: (0,0 ,0) 称为零向量。 负向量:向量 (− − − a a a 1 2 , , , n ) 称为向量 = (a a a 1 2 , , , n ) 的负向 量,记为-α。 向量的数量乘积:设 = (a a a k F 1 2 , , , , n ) ,则称向量 (ka ka ka 1 2 , , , n ) 为向量α与数k的数量乘积, 记为kα。 向量的减法:α-β=α+(-β)

向量的加法满足以下四条运算规律: 1、交换律:α+β=β+a; 2、结合律:(α+β)+y=a+(β+Y) 3、有零元:a+0=α,Va; 4、有负元:+-a=0,Va。 向量的数乘满足以下四条运算规律: 分配律:k(a+B)=ka+kB 2、分配律:(k+1)a=ka+la 3、结合律:k(la)=(kDa 4、有单位元:l=a。 第三章线性方程组
第三章 线性方程组 向量的加法满足以下四条运算规律: 1、交换律:α+β=β+α; 向量的数乘满足以下四条运算规律: 1、分配律: k( + ) = k + k ; 2、分配律: (k + l) = k + l ; 3、结合律: k(l) = (k l) ; 4、有单位元 : 1 = 。 2、结合律:(α+β)+γ=α+(β+γ); 3、有零元:α+ 0 =α, ; 4、有负元:α+ = 0 −a ,

如果我们不考虑研究对象的具体性质和内容,只讨论那 些与运算有关的性质,则可以抽象出向量空间的公理化定义 定义3.2.2:F是一个数域,V是以F中的数为分量的n维 向量组成的全体,考虑上面定义的向量加法和数量乘积。其 加法和数乘分别满足以上四条规律,称V为F上的n维向量空 间,记为Fn。 由向量的加法和数乘可以推出以下性质: 1、0·c=0; 2、(-1)a==a 3、k.0=0; 4、若k≠0.c≠0,则k·c≠0。 第三章线性方程组
第三章 线性方程组 如果我们不考虑研究对象的具体性质和内容,只讨论那 些与运算有关的性质,则可以抽象出向量空间的公理化定义。 定义3.2.2:F是一个数域,V是以F中的数为分量的n维 向量组成的全体,考虑上面定义的向量加法和数量乘积。其 加法和数乘分别满足以上四条规律,称V为F上的n维向量空 间,记为 F n 。 由向量的加法和数乘可以推出以下性质: 1、 0 0 = ; 2、 (− = − 1) ; 3、 k =0 0 ; 4、若 k 0, 0 ,则 k 0

向量可以写成:a=(a,a2…an) 也可以写成:a 前者称为行向量,后者称为列向量。列向量常写成: C 152 第三章线性方程组
第三章 线性方程组 向量可以写成: = (a a a 1 2 , , , n ) , 1 2 , n a a a = 也可以写成: 前者称为行向量,后者称为列向量。 1 2 ( , , , ) n = a a a 列向量常写成:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 温州大学:《高等代数》课程教学资源(PPT课件)第三章 线性方程组(3.1)消元法.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第三章 线性方程组(3.6)线性方程组的解结构.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第三章 线性方程组(3.5)线性方程组有解判别定理.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第三章 线性方程组(3.4)矩阵的秩.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第三章 线性方程组(3.3)线性相关性.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第一章 概率论的基本概念(1.5)事件的独立性.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第一章 概率论的基本概念(1.4)条件概率.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第一章 概率论的基本概念(1.3)古典概率模型.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第一章 概率论的基本概念(1.2)事件的概率.ppt
- 湖南商学院:《概率论》课程教学资源(PPT课件)第一章 概率论的基本概念(1.1)随机试验与事件.ppt
- 西北工业大学:《线性代数》课程教学资源(讲稿)第一章 n阶行列式.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第五章(5-3)实对称矩阵的相似矩阵.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第五章(5-1)矩阵的特征值与特征向量.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第四章(4-5)线性方程组解的结构.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第四章(4-4)向量空间.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第四章(4-3)向量组的秩与最大无关组.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第四章(4-1)向量及其运算.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第三章(3-4)初等矩阵.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第三章(3-1)矩阵的秩.doc
- 西北工业大学:《线性代数》课程教学资源(讲稿)第二章(2-3)逆矩阵.doc
- 《数学分析》课程教学资源(参考书籍教材,PDF电子版,共八讲).pdf
- 《常微分方程习题答案》讲解.pdf
- 微积分:二重积分的计算.ppt
- 《最优化方法》课程教学资源(题解)第八次 凸集与凸函数.ppt
- 《最优化方法》课程教学资源(题解)第七次 最小二乘法.ppt
- 《最优化方法》课程教学资源(题解)第三次 梯度法和共轭梯度法.ppt
- 《最优化方法》课程教学资源(题解)第九次 惩罚函数法.ppt
- 《最优化方法》课程教学资源(题解)第二次 一维最优化.ppt
- 《最优化方法》课程教学资源(题解)第五次 模式搜索法.ppt
- 《最优化方法》课程教学资源(题解)第五次 无约束最优化问题的直接方法.ppt
- 《最优化方法》课程教学资源(题解)第八次 最优性条件.ppt
- 《最优化方法》课程教学资源(题解)第六次 单纯形替换法.ppt
- 《最优化方法》课程教学资源(题解)第十次 线性规划.ppt
- 《偏微分方程》第1章 绪论.ppt
- 《偏微分方程》第2章 一阶拟线性方程.ppt
- 《偏微分方程》第3章 波动方程.ppt
- 《偏微分方程》第4章 热传导方程.ppt
- 《偏微分方程》第5章 位势方程.ppt
- 《偏微分方程》第6章 变分法与边值问题.ppt
- 《偏微分方程》第7章 特征理论.ppt