中国高校课件下载中心 》 教学资源 》 大学文库

《大学物理》PPT参考资料:第一章 振动与波动(习题分析)

文档信息
资源类别:文库
文档格式:PPT
文档页数:13
文件大小:126KB
团购合买:点击进入团购
内容简介
《大学物理》PPT参考资料:第一章 振动与波动(习题分析)
刷新页面文档预览

振动与波动 习题分析

1 振动与波动 习题分析

例1在匀加速上升的电梯中有一悬挂的摆, 角位移很小时,是否可以看成是简谐振动? 解]非惯性系中列牛顿方程 01 切向:(应考虑惯性力m)aS a mg sin- ma sin= m sin6≈6,s=l6 d26 m g m6(o+a=ml ma d 88+a 十 6=0 对比2+02x=0,可知是简谐振动 2

2 例1. 在匀加速上升的电梯中有一悬挂的摆, 角位移很小时,是否可以看成是简谐振动? l m a mg s ma q [解] 非惯性系中列牛顿方程 2 2 2 2 ( ) sin , sin sin dt d m g a ml S l dt d S mg ma m q q q q q q q − + =  = − − =  0 2 2 = + → + q q l g a dt d 对比 0 2 2 2 + x = dt d x  , 可知是简谐振动. 切向: (应考虑惯性力-ma )

例2.横截面均匀光滑的U形管中,有总长度为L 的液体若液面上下有微小起伏问是否是 简谐振动?(液体不能看成质点) 「解] ·于看是否符合简谐振动的定义式 方法一.对比动力学方程 如图,高出的液体段受重力 W=(△.p)g=2uSg 它正是整个液体受的合力

3 例2. 横截面均匀光滑的U形管中,有总长度为L 的液体.若液面上下有微小起伏,问是否是 简谐振动?(液体不能看成质点) [解] 看是否符合简谐振动的定义式. 如图,高出的液体段受重力 W = (V  )g = 2ySg 它正是整个液体受的合力. 方法一. 对比动力学方程

由牛顿运动定律: 2y 2 psgy =m 2 OSL J y 28 2 +-y 0 对比d2x +2x=0可知是简谐振动 dt 而且知a=28

4 2 2 2 2 2 dt d y SL dt d y − Sgy = m =  由牛顿运动定律: 对比 0 2 2 2 + x = dt d x  可知是简谐振动. 而且知 L 2g  = 0 2 2 2 → + y = L g dt d y

方法二对比能量的特征--能量法 设液体在平衡位置时, 平衙液面 重力势能为零, 液体在如图位置时, 相当于将右边高为y的液体 移到了左边重心上移了y 2(,sg 液体有了势能E,=(psyg)y=(2 因为光滑,无能量损耗 2 E=Ek+Ep= const可知是简谐振动

5 方法二. 对比能量的特征------能量法 设液体在平衡位置时, 重力势能为零, 液体在如图位置时, 相当于将右边高为y的液体 移到了左边.重心上移了y. 液体有了势能 ( ) ( ) 2 2 2 1 E s yg y sg y P =  =  ----- 2 2 1 因为光滑 = k y ,无能量损耗  E E E const. = K + P = 可知是简谐振动

因为k=2psg 所以a k 2psg 2g Vm \ psL 结果相同

6 因为 k = 2sg 所以 L g sL sg m k 2 2 = = =    结果相同

例3.一平面简谐波在媒质1中向+x方向传播, 已知:x=-d处的a点的振动表达式为 n= Acoso t,在原点右侧处有 一厚度为D的媒质2(如图所示) 在媒质1,2中波速为u,u2且p1u1p2L2 并设波的振幅都是A 试:(1)写出Ⅸ区沿+x方向传播的波的波函数 (2)写出S1面上反射波的波函数 (3)写出S2面上反射波在区的波函数 (4)若要使两列反射波在区内叠加后的 合振幅为最大,媒质2的厚度至少应多大?

7 例3. 一平面简谐波在媒质1中向+x方向传播, 已知: x = -d 处的a点的振动表达式为 A t  a = cos , 在原点右侧 l处有 在媒质 1,2中波速为u1 ,u2 ,且1u1< 2u2 并设波的振幅都是A. 一厚度为 D的媒质2(如图所示), 试:(1)写出I区沿+x方向传播的波的波函数 (2)写出S1面上反射波的波函数 (3)写出S2面上反射波在 I区的波函数 (4)若要使两列反射波在 I区内叠加后的 合振幅为最大,媒质2的厚度至少应多大?

「解](1)写出I区沿+x方向传播的波的波函数 5,入射=Acos(ot 2丌) 或入射=Ac0sO(1-++d p11 I区 I区Ⅲ区

8 [解] (1)写出 I 区沿 +x 方向传播的波的波函数 cos( 2 ) 1 .     x d A t I + 入 射 = − cos ( ) 1 . u x d A t I + 或  入 射 =  − I 区 II 区 III 区 D x  1u1  2u2 S1 S2 0 l -d a  1u1 l l  I 区 II 区 III 区 D x  1u1  2u2 S1 S2 0 l -d a  1u1 l l  x

(2)写出S1面上反射波的波函数 先写出波在S面上引起质点振动的表达式 p 11 p 1 2,=Ac0s(-2+d 在S1面上反射的波 有半波损失,故 反射波的波函数为 I区Ⅱ区Ⅲ区 ,反射= COS O∥、I+d 元

9 I 区 II 区 III 区 D x  1u1  2u2 S1 S2 0 l -d a  1u1 l l  先写出波在S1面上引起质点振动的表达式 cos ( ) 1 1 u l d A t S +  =  − 在S1面上反射的波 有半波损失,故 反射波的波函数为 cos ( ) 1 1 .     − − + + = − u x l u l d A t I 反 射 (2)写出S1面上反射波的波函数

(3)写出S2面上反射波在I区的波函数 先写出波在S2面上引5,= Acos( l+dD 起质点振动的表达式 1反.ACOs0-4+dDD 2u2 p1u 2因为在S2面上的反 射波无半波损失, d 再进入S1面透射到 I区也无半波损失。 I区 区Ⅲ区

10 先写出波在S2面上引 起质点振动的表达式 cos ( ) 1 2 2 u D u l d A t S − +  =  − 因为在S2面上的反 射波无半波损失, 再进入S1面透射到 I区也无半波损失。 cos ( ) 1 2 2 1 . u x l u D u D u l d A t I − − − + +   反 射 =  − I 区 II 区 III 区 D x  1u1  2u2 S1 S2 0 l -d a  1u1 l l  (3)写出S2面上反射波在I区的波函数

共13页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档