《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 05 Text and Web Analytics

Business Intelligence: A Managerial Perspective on Analytics(3rd Edition) INTELLIGENCE A Managerial Perspective on Analytics Chapter 5 Text and Web Analytics EFRAUTI RRAN
Chapter 5: Text and Web Analytics Business Intelligence: A Managerial Perspective on Analytics (3rd Edition)

Learning Objectives Describe text mining and understand the need for text mining Differentiate between text mining, Web mining and data mining Understand the different application areas for text mining Know the process of carrying out a text mining project Understand the different methods to introduce structure to text-based data Continued.) Copynight@ 2014 Pearson Education, Inc Slide 5-2
Copyright © 2014 Pearson Education, Inc. Slide 5- 2 Learning Objectives ▪ Describe text mining and understand the need for text mining ▪ Differentiate between text mining, Web mining, and data mining ▪ Understand the different application areas for text mining ▪ Know the process of carrying out a text mining project ▪ Understand the different methods to introduce structure to text-based data (Continued…)

Learning Objectives Describe Web mining, its objectives, and its benefits Understand the three different branches of web mIning Web content mining Web structure mining Web usage mining Understand the applications of these three mining paradigms Copynight@ 2014 Pearson Education, Inc Slide 5-3
Copyright © 2014 Pearson Education, Inc. Slide 5- 3 Learning Objectives ▪ Describe Web mining, its objectives, and its benefits ▪ Understand the three different branches of Web mining ▪ Web content mining ▪ Web structure mining ▪ Web usage mining ▪ Understand the applications of these three mining paradigms

Opening Vignette Machine Versus Men on Jeopardy! The Story of Watson Situation Problem Watch it on YouTube! Solutionhttps://www.youtube.com/watch?v=ylr1bylou8m Results Answer discuss the case questions Copynight@ 2014 Pearson Education, Inc Slide 5-4
Copyright © 2014 Pearson Education, Inc. Slide 5- 4 Opening Vignette… Machine Versus Men on Jeopardy!: The Story of Watson ▪ Situation ▪ Problem ▪ Solution ▪ Results ▪ Answer & discuss the case questions. Watch it on YouTube! https://www.youtube.com/watch?v=YLR1byL0U8M

Questions for the Opening Vignette 1. What is Watson? What is special about it? What technologies were used in building Watson(both hardware and software)? 3. What are the innovative characteristics of DeepQA architecture that made Watson superior? 4. Why did IBM spend all that time and money to build Watson? Where is the Rol? Copynight@ 2014 Pearson Education, Inc Slide 5-5
Copyright © 2014 Pearson Education, Inc. Slide 5- 5 Questions for the Opening Vignette 1. What is Watson? What is special about it? 2. What technologies were used in building Watson (both hardware and software)? 3. What are the innovative characteristics of DeepQA architecture that made Watson superior? 4. Why did IBM spend all that time and money to build Watson? Where is the ROI?

A High-Level Depiction of IBM Watsons DeepQA Architecture Answer Evidence sources Candidate P Support Deep search answer ence evidence Question generation retrieval scoring ? models Question Query Hypothesis Soft Hypothesis and d Synthesis Final merging analysIs decomposition generation filtering evidence scoring and ranking Hypothesis Soft Hypothesis and generation filtering evidence scoring Answer and confidence Copynight@ 2014 Pearson Education, Inc Slide 5-6
Copyright © 2014 Pearson Education, Inc. Slide 5- 6 A High-Level Depiction of IBM Watson’s DeepQA Architecture Trained models Question analysis Hypothesis generation Query decomposition Soft filtering Hypothesis and evidence scoring Synthesis Final merging and ranking Answer and confidence ... ... ... Hypothesis generation Soft filtering Hypothesis and evidence scoring Answer sources Evidence sources Primary search Candidate answer generation Support evidence retrieval Deep evidence scoring Question 1 2 3 4 5

Text Mining Concepts 85-90 percent of all corporate data is in some kind of unstructured form(e.g, text) Unstructured corporate data is doubling in size every 18 months Tapping into these information sources is not an option, but a need to stay competitive Answer: text mining A semi-automated process of extracting knowledge from unstructured data sources a.k. a text data mining or knowledge discovery in textual databases Copynight@ 2014 Pearson Education, Inc Slide 5-7
Copyright © 2014 Pearson Education, Inc. Slide 5- 7 Text Mining Concepts ▪ 85-90 percent of all corporate data is in some kind of unstructured form (e.g., text) ▪ Unstructured corporate data is doubling in size every 18 months ▪ Tapping into these information sources is not an option, but a need to stay competitive ▪ Answer: text mining ▪ A semi-automated process of extracting knowledge from unstructured data sources ▪ a.k.a. text data mining or knowledge discovery in textual databases

Data Mining versus Text Mining Both seek for novel and useful patterns Both are semi-automated processes Difference is the nature of the data Structured versus unstructured data Structured data: in databases Unstructured data: Word documents. PDF files, text excerpts, XML files, and so on Text mining-first, impose structure to the data. then mine the structured data Copynight@ 2014 Pearson Education, Inc Slide 5-8
Copyright © 2014 Pearson Education, Inc. Slide 5- 8 Data Mining versus Text Mining ▪ Both seek for novel and useful patterns ▪ Both are semi-automated processes ▪ Difference is the nature of the data: ▪ Structured versus unstructured data ▪ Structured data: in databases ▪ Unstructured data: Word documents, PDF files, text excerpts, XML files, and so on ▪ Text mining – first, impose structure to the data, then mine the structured data

Text Mining Concepts Benefits of text mining are obvious, especially in text-rich data environments e.g., law(court orders), academic research(research articles), finance(quarterly reports, medicine(discharge summaries), biology(molecular interactions), technology (patent files), marketing(customer comments), etc Electronic communication records(e.g, Email) Spam filtering Email prioritization and categorization Automatic response generation Copynight@ 2014 Pearson Education, Inc Slide 5-9
Copyright © 2014 Pearson Education, Inc. Slide 5- 9 Text Mining Concepts ▪ Benefits of text mining are obvious, especially in text-rich data environments ▪ e.g., law (court orders), academic research (research articles), finance (quarterly reports), medicine (discharge summaries), biology (molecular interactions), technology (patent files), marketing (customer comments), etc. ▪ Electronic communication records (e.g., Email) ▪ Spam filtering ▪ Email prioritization and categorization ▪ Automatic response generation

Text Mining Application Area Information extraction Topic tracking Summarization Categorization Clustering Concept linking Question answering Copynight@ 2014 Pearson Education, Inc Slide 5-10
Copyright © 2014 Pearson Education, Inc. Slide 5- 10 Text Mining Application Area ▪ Information extraction ▪ Topic tracking ▪ Summarization ▪ Categorization ▪ Clustering ▪ Concept linking ▪ Question answering
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 04 Data Mining.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 03 Business Reporting, Visual Analytics, and Business Performance Management.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 02 Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 01 An Overview of Business Intelligence, Analytics, and Decision Support.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第9章 耐热导线工厂质量管理数据分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第8章 商务宾馆竞争分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第7章 海底捞火锅运营分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第6章 银行信用卡欺诈与拖欠行为分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第5章 香水销售分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第4章 SPSS Modeler介绍.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第3章 可视化的分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第2章 保险产品推荐.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第1章 数据分析过程的主要问题.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第11章 卷积神经网络在音频质量评价领域的应用.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第10章 基于逻辑回归模型的高危.pptx
- 中国科学院计算技术研究所:《高级人工智能》PPT课件_贝叶斯网络——概率推理(史忠植).ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)序列模式挖掘算法.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)密度聚类——算法详解.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)关联规则 CARMA Continuous Association Rule Mining Algorithm.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)09 搜索引擎优化 Search Engine Optimization.ppt
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 06 Big Data and Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 07 Business Analytics:Emerging Trends and Future Impacts.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics ….pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)07 Big Data Concepts and Tools.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.docx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)07 Big Data Concepts and Tools.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 1 An Overview of Business Intelligence, Analytics, and Data Science.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 2 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pdf