《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics …

Business Intelligence, Analytics, and Data Science: A Managerial Perspective Fourth Edition BUSINESS INTELLIGENCE ANALYTICS Chapter 5 AND DATA SCIENCE Predictive Analytics I: Text A Managerial Web and Social Media Analytics Ramesh Sharda Dursun Delen Efraim Turban PEarson Pearson Copyright 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Business Intelligence, Analytics, and Data Science: A Managerial Perspective Fourth Edition Chapter 5 Predictive Analytics II: Text, Web, and Social Media Analytics … Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved

Learning Objectives (1 of2 5.1 Describe text mining and understand the need for text mining 5.2 Differentiate among text analytics, text mining, and data mIning 5. 3 Understand the different application areas for teXt mInIng 5. 4 Know the process of carrying out a text mining project 5. 5 Appreciate the different methods to introduce structure to text-based data Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Learning Objectives (1 of 2) 5.1 Describe text mining and understand the need for text mining 5.2 Differentiate among text analytics, text mining, and data mining 5.3 Understand the different application areas for text mining 5.4 Know the process of carrying out a text mining project 5.5 Appreciate the different methods to introduce structure to text-based data

Learning Objectives (2 of 2) 5.6 Describe sentiment analysis 5.7 Develop familiarity with popular applications of sentiment analysis 5.8 Learn the common methods for sentiment analysis 5.9 Become familiar with speech analytics as it relates to sentiment analysis Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Learning Objectives (2 of 2) 5.6 Describe sentiment analysis 5.7 Develop familiarity with popular applications of sentiment analysis 5.8 Learn the common methods for sentiment analysis 5.9 Become familiar with speech analytics as it relates to sentiment analysis

Opening vignette (I of3 Machine Versus Men on jeopardy l the story of Watson I BM Watson going head-to-head with the best of the best in Jeopardy! IN Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Opening Vignette (1 of 3) Machine Versus Men on Jeopardy!: The Story of Watson • IBM Watson going head-to-head with the best of the best in Jeopardy!

Opening Vignette (2 of3 IBM Watson- How does it do it? A Evide souTO sourCeS Question On natura Prirnary Candidate Support Deep language] evidence evidence search generation retrieval scoring Question ftranslation Analysis Evidence Hypothesis 1 Soft Synthesis Merging and to digitall [decomposition filtering scorIng [combining) ranking " Hypothesis 2 -Soft filtering scoring Answer and confidence Hypothesis Evidence scoring Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Opening Vignette (2 of 3) • IBM Watson – How does it do it?

Opening Vignette (3 of 3) Discussion Questions for the Opening vignette 1. What is Watson? What is special about it? 2. What technologies were used in building Watson (both hardware and software)? 3. What are the innovative characteristics of deep Qa architecture that made Watson superior? 4. Why did BM spend all that time and money to build Watson? Where is the return on investment(ROD? Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Opening Vignette (3 of 3) Discussion Questions for the Opening Vignette 1. What is Watson? What is special about it? 2. What technologies were used in building Watson (both hardware and software)? 3. What are the innovative characteristics of DeepQA architecture that made Watson superior? 4. Why did IBM spend all that time and money to build Watson? Where is the return on investment (ROI)?

Text Analytics and Text Mining(1 of 2) Text Analytics versus Text Mining Text Analytics Information Retrieval Information Extraction Data Mining Web Mining or simpl Text Analytics Information Retrieval Text Mining Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Text Analytics and Text Mining (1 of 2) • Text Analytics versus Text Mining • Text Analytics = – Information Retrieval + – Information Extraction + – Data Mining + – Web Mining or simply Text Analytics = Information Retrieval + Text Mining

Text Analytics and Text Mining (2 of 2) Figure 5.2 Text Analytics, Related Application Areas, and Enabling Disciplines TEXT ANALYTICS I Document Matching Web Content Mining Link Analysis Information H-------sRetrieval Text Minin Web Structure Mining Search Engines “ Knowledge Discovery in Web Usage Mining Textua D Statistics Management Science Artificial Intelligence Computer Science Other Disciplines Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Text Analytics and Text Mining (2 of 2) • Figure 5.2 Text Analytics, Related Application Areas, and Enabling Disciplines

Text Mining Concepts (1 of2) 85-90 percent of all corporate data is in some kind of unstructured form(e.g, text Unstructured corporate data is doubling in size every 18 months Tapping into these information sources is not an option, but a need to stay competitive ° Answer: text mining A semi-automated process of extracting knowledge from unstructured data sources a k a. text data mining or knowledge discovery in textual databases Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Text Mining Concepts (1 of 2) • 85-90 percent of all corporate data is in some kind of unstructured form (e.g., text) • Unstructured corporate data is doubling in size every 18 months • Tapping into these information sources is not an option, but a need to stay competitive • Answer: text mining – A semi-automated process of extracting knowledge from unstructured data sources – a.k.a. text data mining or knowledge discovery in textual databases

Data Mining Versus Text Mining Both seek for novel and useful patterns Both are semi-automated processes Difference is the nature of the data Structured versus unstructured data Structured data: in databases Unstructured data: word documents Pdf files text excerpts, XML files, and so on To perform text mining--first, impose structure to the data. then mine the structured data Pearson Copyright C 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved
Copyright © 2018, 2014, 2011 Pearson Education, Inc. All Rights Reserved Data Mining Versus Text Mining • Both seek for novel and useful patterns • Both are semi-automated processes • Difference is the nature of the data: – Structured versus unstructured data – Structured data: in databases – Unstructured data: Word documents, PDF files, text excerpts, XML files, and so on • To perform text mining – first, impose structure to the data, then mine the structured data
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 07 Business Analytics:Emerging Trends and Future Impacts.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 06 Big Data and Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 05 Text and Web Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 04 Data Mining.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 03 Business Reporting, Visual Analytics, and Business Performance Management.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 02 Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 01 An Overview of Business Intelligence, Analytics, and Decision Support.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第9章 耐热导线工厂质量管理数据分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第8章 商务宾馆竞争分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第7章 海底捞火锅运营分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第6章 银行信用卡欺诈与拖欠行为分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第5章 香水销售分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第4章 SPSS Modeler介绍.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第3章 可视化的分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第2章 保险产品推荐.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第1章 数据分析过程的主要问题.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第11章 卷积神经网络在音频质量评价领域的应用.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第10章 基于逻辑回归模型的高危.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)07 Big Data Concepts and Tools.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.docx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)07 Big Data Concepts and Tools.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 1 An Overview of Business Intelligence, Analytics, and Data Science.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 2 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 3 Descriptive Analytics II:Business Intelligence and Data Warehousing.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 4 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 5 Predictive Analytics II:Text, Web, and Social Media Analytics.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 6 Prescriptive Analytics:Optimization and Simulation.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 7 Big Data Concepts and Tools.pdf