《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 06 Big Data and Analytics

Business Intelligence: A Managerial Perspective on Analytics(3rd Edition) INTELLIGENCE A Managerial Perspective on Analytics Chapter 6: Big Data and Analytics EFRAUTI RRAN
Chapter 6: Big Data and Analytics Business Intelligence: A Managerial Perspective on Analytics (3rd Edition)

Learning Objectives Learn what Big Data is and how it is changing the world of analytics Understand the motivation for and business drivers of Big Data analytics Become familiar with the wide range of enabling technologies for Big Data analytics Learn about Hadoop, MapReduce, and NosQL as they relate to Big data analytics Understand the role of and capabilities/skills for data scientist as a new analytics profession Continued.) Copynight@ 2014 Pearson Education, Inc Slide 6-2
Copyright © 2014 Pearson Education, Inc. Slide 6 - 2 Learning Objectives ▪ Learn what Big Data is and how it is changing the world of analytics ▪ Understand the motivation for and business drivers of Big Data analytics ▪ Become familiar with the wide range of enabling technologies for Big Data analytics ▪ Learn about Hadoop, MapReduce, and NoSQL as they relate to Big Data analytics ▪ Understand the role of and capabilities/skills for data scientist as a new analytics profession (Continued…)

Learning Objectives Compare and contrast the complementary uses of data warehousing and Big Data Become familiar with the vendors of Big data tools and services Understand the need for and appreciate the capabilities of stream analytics Learn about the applications of stream analytics Copynight@ 2014 Pearson Education, Inc Slide 6-3
Copyright © 2014 Pearson Education, Inc. Slide 6 - 3 Learning Objectives ▪ Compare and contrast the complementary uses of data warehousing and Big Data ▪ Become familiar with the vendors of Big Data tools and services ▪ Understand the need for and appreciate the capabilities of stream analytics ▪ Learn about the applications of stream analytics

Opening Vignette Big Data Meets Big Science at CERN Situation Problem Solution Results Answer discuss the case questions Copynight@ 2014 Pearson Education, Inc Slide 6-4
Copyright © 2014 Pearson Education, Inc. Slide 6 - 4 Opening Vignette… Big Data Meets Big Science at CERN ▪ Situation ▪ Problem ▪ Solution ▪ Results ▪ Answer & discuss the case questions

Questions for the Opening Vignette What iS CERN, and why is it important to the world of science? How does the Large Hadron Collider work? What does it produce? What is the essence of the data challenge at CERN? How significant is it? What was the solution? How were the Big data challenges addressed with this solution? What were the results? Do you think the current solution is sufficient? Copynight@ 2014 Pearson Education, Inc Slide 6-5
Copyright © 2014 Pearson Education, Inc. Slide 6 - 5 Questions for the Opening Vignette ▪ What is CERN, and why is it important to the world of science? ▪ How does the Large Hadron Collider work? What does it produce? ▪ What is the essence of the data challenge at CERN? How significant is it? ▪ What was the solution? How were the Big Data challenges addressed with this solution? ▪ What were the results? Do you think the current solution is sufficient?

Big Data-Definition and Concepts Big Data means different things to people with different backgrounds and interests Traditionally, Big Data"= massive volumes of data E.g., volume of data at CERN, NASA, Google Where does the Big Data come from? Everywhere! Web logs, RFID, GPS systems, sensor networks, social networks. Internet-based text documents Internet search indexes, detail call records, astronomy, atmospheric science, biology, genomics, nuclear physics, biochemical experiments, medical records, scientific research, military surveillance, multimedia archives, Copynight@ 2014 Pearson Education, Inc Slide 6-6
Copyright © 2014 Pearson Education, Inc. Slide 6 - 6 Big Data - Definition and Concepts ▪ Big Data means different things to people with different backgrounds and interests ▪ Traditionally, “Big Data” = massive volumes of data ▪ E.g., volume of data at CERN, NASA, Google, … ▪ Where does the Big Data come from? ▪ Everywhere! Web logs, RFID, GPS systems, sensor networks, social networks, Internet-based text documents, Internet search indexes, detail call records, astronomy, atmospheric science, biology, genomics, nuclear physics, biochemical experiments, medical records, scientific research, military surveillance, multimedia archives, …

Technology Insights 6.1 The Data Size Is Getting Big, Bigger, Hadron Collider -1 PB/sec Boeing jet -20 TB/hr Facebook -500 TB/day You lube -1 TB/4 min Name Symbo Value Kilobyte The proposed Square Kilometer Array telescope gigabyte (the world's proposed terabyte Petabyte biggest telescope)-1 EB/day Zettabyte Yottaby Brontobyte BB GeB 30 "Not an official SI (International System of Units) name/symbol, yet Copynight@ 2014 Pearson Education, Inc Slide 6-7
Copyright © 2014 Pearson Education, Inc. Slide 6 - 7 Technology Insights 6.1 The Data Size Is Getting Big, Bigger, … ▪ Hadron Collider - 1 PB/sec ▪ Boeing jet - 20 TB/hr ▪ Facebook - 500 TB/day ▪ YouTube – 1 TB/4 min ▪ The proposed Square Kilometer Array telescope (the world’s proposed biggest telescope) – 1 EB/day

Big Data-Definition and Concepts Big data is a misnomer Big Data is more than just big The Vs that define Big Data Volume Variety Velocity Veraci Variability Value Copynight@ 2014 Pearson Education, Inc Slide 6-8
Copyright © 2014 Pearson Education, Inc. Slide 6 - 8 Big Data - Definition and Concepts ▪ Big Data is a misnomer! ▪ Big Data is more than just “big” ▪ The Vs that define Big Data ▪ Volume ▪ Variety ▪ Velocity ▪ Veracity ▪ Variability ▪ Value ▪ …

Big Data-Definition and Concepts Big Data is not new! Traditionally, Big Data= massive volumes of data Volume of data at CERN, NASA, Google Where does the Big Data come from? Everywhere! Web logs, RFID, GPS systems, sensor networks, social networks, Internet-based text documents Internet search indexes, detail call records, astronomy, atmospheric science, biology, genomics, nuclear physics biochemical experiments, medical records, scientific research, military surveillance, multimedia archives Copynight@ 2014 Pearson Education, Inc Slide 6-9
Copyright © 2014 Pearson Education, Inc. Slide 6 - 9 Big Data - Definition and Concepts ▪ Big Data is not new! ▪ Traditionally, “Big Data” = massive volumes of data ▪ Volume of data at CERN, NASA, Google, … ▪ Where does the Big Data come from? ▪ Everywhere! Web logs, RFID, GPS systems, sensor networks, social networks, Internet-based text documents, Internet search indexes, detail call records, astronomy, atmospheric science, biology, genomics, nuclear physics, biochemical experiments, medical records, scientific research, military surveillance, multimedia archives, …

A High-Level Conceptual Architecture for Big Data Solutions(by AsterData/Teradata) UNIFIED DATA ARCHITECTURE System Conceptual View MOVE MANAGE ACCESS DATA PLATFORM INTEGRATED DATA WAREHOUSE Customers Images Frontline Workers 司 Machine DISCOVERY PLATFORM Analysts EVENT PROCESSING DATA USERS Copynight@ 2014 Pearson Education, Inc Slide 6-10
Copyright © 2014 Pearson Education, Inc. Slide 6 - 10 A High-Level Conceptual Architecture for Big Data Solutions (by AsterData / Teradata) Math and Stats Data Mining Business Intelligence Applications Languages Marketing ANALYTIC TOOLS & APPS USERS DISCOVERY PLATFORM INTEGRATED DATA WAREHOUSE DATA PLATFORM MOVE MANAGE ACCESS UNIFIED DATA ARCHITECTURE System Conceptual View Marketing Executives Operational Systems Frontline Workers Customers Partners Engineers Data Scientists Business Analysts EVENT PROCESSING ERP SCM CRM Images Audio and Video Machine Logs Text Web and Social BIG DATA SOURCES ERP
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 05 Text and Web Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 04 Data Mining.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 03 Business Reporting, Visual Analytics, and Business Performance Management.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 02 Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 01 An Overview of Business Intelligence, Analytics, and Decision Support.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第9章 耐热导线工厂质量管理数据分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第8章 商务宾馆竞争分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第7章 海底捞火锅运营分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第6章 银行信用卡欺诈与拖欠行为分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第5章 香水销售分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第4章 SPSS Modeler介绍.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第3章 可视化的分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第2章 保险产品推荐.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第1章 数据分析过程的主要问题.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第11章 卷积神经网络在音频质量评价领域的应用.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第10章 基于逻辑回归模型的高危.pptx
- 中国科学院计算技术研究所:《高级人工智能》PPT课件_贝叶斯网络——概率推理(史忠植).ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)序列模式挖掘算法.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)密度聚类——算法详解.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)关联规则 CARMA Continuous Association Rule Mining Algorithm.ppt
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 07 Business Analytics:Emerging Trends and Future Impacts.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics ….pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)07 Big Data Concepts and Tools.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.docx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)07 Big Data Concepts and Tools.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 1 An Overview of Business Intelligence, Analytics, and Data Science.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 2 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 3 Descriptive Analytics II:Business Intelligence and Data Warehousing.pdf