《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 07 Business Analytics:Emerging Trends and Future Impacts

Business Intelligence: A Managerial Perspective on Analytics(3rd Edition) INTELLIGENCE A Managerial Perspective on Analytics Chapter 7: Business Analytics RAMESH SHAL EFRAUTI RRAN Emerging Trends and Future Impacts
Chapter 7: Business Analytics: Emerging Trends and Future Impacts Business Intelligence: A Managerial Perspective on Analytics (3rd Edition)

Learning Objectives Explore some of the emerging technologies that may impact analytics, Bl, and decision support Describe how geospatial and location-based analytics are assisting organizations Describe how analytics are powering consumer applications and creating a new opportunity for entrepreneurship for analytics Describe the potential of cloud computing in business intelligence Continued.) Copynight@ 2014 Pearson Education, Inc Slide 7-2
Copyright © 2014 Pearson Education, Inc. Slide 7- 2 Learning Objectives ▪ Explore some of the emerging technologies that may impact analytics, BI, and decision support ▪ Describe how geospatial and location-based analytics are assisting organizations ▪ Describe how analytics are powering consumer applications and creating a new opportunity for entrepreneurship for analytics ▪ Describe the potential of cloud computing in business intelligence (Continued…)

Learning Objectives Understand Web 2.0 and its characteristics as related to analytics Describe the organizational impacts of analytics applications List and describe the major ethical and legal issues of analytics implementation Understand the analytics ecosystem to get a sense of the various types of players in the analytics industry and how one can work in a variety of roles Copynight@ 2014 Pearson Education, Inc Slide 7-3
Copyright © 2014 Pearson Education, Inc. Slide 7- 3 Learning Objectives ▪ Understand Web 2.0 and its characteristics as related to analytics ▪ Describe the organizational impacts of analytics applications ▪ List and describe the major ethical and legal issues of analytics implementation ▪ Understand the analytics ecosystem to get a sense of the various types of players in the analytics industry and how one can work in a variety of roles

Opening Vignette Oklahoma gas and Electric Employs Analytics to Promote Smart Energy Use Company background Problem description Proposed solution Results Answer discuss the case questions Copynight@ 2014 Pearson Education, Inc Slide 7-4
Copyright © 2014 Pearson Education, Inc. Slide 7- 4 Opening Vignette… Oklahoma Gas and Electric Employs Analytics to Promote Smart Energy Use ▪ Company background ▪ Problem description ▪ Proposed solution ▪ Results ▪ Answer & discuss the case questions

Questions for the Opening Vignette 1. Why perform consumer analytics? 2. What is meant by dynamic segmentation? 3. How does geospatial mapping help OG&E? 4. What types of incentives might the consumers respond to in changing their energy use? Copynight@ 2014 Pearson Education, Inc Slide 7-5
Copyright © 2014 Pearson Education, Inc. Slide 7- 5 Questions for the Opening Vignette 1. Why perform consumer analytics? 2. What is meant by dynamic segmentation? 3. How does geospatial mapping help OG&E? 4. What types of incentives might the consumers respond to in changing their energy use?

Location-Based Analytics Geospatial Analytics Geocoding Visual maps Postal codes Latitude Longitude Enables aggregate view of a large geographic area Integrate"into customer view Copynight@ 2014 Pearson Education, Inc Slide 7-6
Copyright © 2014 Pearson Education, Inc. Slide 7- 6 Location-Based Analytics ▪ Geospatial Analytics ▪ Geocoding ▪ Visual maps ▪ Postal codes ▪ Latitude & Longitude ▪ Enables aggregate view of a large geographic area ▪ Integrate “where” into customer view

Location-Based Analytics LOCATION-BASED ANALYTICS ORGANIZATION ORIENTED CONSUMER ORIENTED GEOSPATIAL STATIC LOCATION-BASED DYNAMIC GEOSPATIAL STATIC LOCATION-BASED DYNAMIC APPROACH APPROACH APPROACH APPROACH Examining Geographic Site Live Location Feeds Historic and Current location GPS Navigation and Data Demand Analysis; Predictive Locations RealTime Marketing Promotions Analysis Parking: Health-Social Networks Copynight@ 2014 Pearson Education, Inc Slide 7-7
Copyright © 2014 Pearson Education, Inc. Slide 7- 7 Location-Based Analytics

Location-Based Analytics Location-based databases Geographic Information System(GIS) Used to capture, store, analyze, and manage the data linked to a location Combined with integrated sensor technologies and global positioning systems (GPS) Location Intelligence(LD) Interactive maps that further drill down to details about any location Copynight@ 2014 Pearson Education, Inc Slide 7-8
Copyright © 2014 Pearson Education, Inc. Slide 7- 8 Location-Based Analytics ▪ Location-based databases ▪ Geographic Information System (GIS) ▪ Used to capture, store, analyze, and manage the data linked to a location ▪ Combined with integrated sensor technologies and global positioning systems (GPS) ▪ Location Intelligence (LI)? ▪ Interactive maps that further drill down to details about any location

Use of Location-Based Analytics Retailers- location demographic details combined with other transactiona data can help determine how sales vary by population level assess locational proximity to other competitors and their offerings assess the demand variations and efficiency of supply chain operations analyze customer needs and complaints better target different customer segments Copynight@ 2014 Pearson Education, Inc Slide 7-9
Copyright © 2014 Pearson Education, Inc. Slide 7- 9 Use of Location-Based Analytics ▪ Retailers – location + demographic details combined with other transactional data can help … ▪ determine how sales vary by population level ▪ assess locational proximity to other competitors and their offerings ▪ assess the demand variations and efficiency of supply chain operations ▪ analyze customer needs and complaints ▪ better target different customer segments

Use of Location-Based Analytics Global Intelligence U.S. Transportation Command (USTRANSCOM) track the information about the type of aircraft maintenance histor complete list of crew equipment and supplies on the aircraft location of the aircraft well-informed decisions for global operations Overlaying weather and environmental data Teradata. NAVTEQ. Tele Atlas Copynight@ 2014 Pearson Education, Inc Slide 7-10
Copyright © 2014 Pearson Education, Inc. Slide 7- 10 Use of Location-Based Analytics ▪ Global Intelligence ▪ U.S. Transportation Command (USTRANSCOM) ▪ track the information about the type of aircraft ▪ maintenance history ▪ complete list of crew ▪ equipment and supplies on the aircraft ▪ location of the aircraft ▪ → well-informed decisions for global operations ▪ Overlaying weather and environmental data ▪ Teradata, NAVTEQ, Tele Atlas …
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 06 Big Data and Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 05 Text and Web Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 04 Data Mining.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 03 Business Reporting, Visual Analytics, and Business Performance Management.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 02 Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,第3版)Chapter 01 An Overview of Business Intelligence, Analytics, and Decision Support.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第9章 耐热导线工厂质量管理数据分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第8章 商务宾馆竞争分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第7章 海底捞火锅运营分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第6章 银行信用卡欺诈与拖欠行为分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第5章 香水销售分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第4章 SPSS Modeler介绍.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第3章 可视化的分析.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第2章 保险产品推荐.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第1章 数据分析过程的主要问题.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第11章 卷积神经网络在音频质量评价领域的应用.pptx
- 复旦大学:《数据挖掘实用案例分析》课程教学资源(PPT课件讲稿)第10章 基于逻辑回归模型的高危.pptx
- 中国科学院计算技术研究所:《高级人工智能》PPT课件_贝叶斯网络——概率推理(史忠植).ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)序列模式挖掘算法.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)密度聚类——算法详解.ppt
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics ….pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)07 Big Data Concepts and Tools.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(PPT课件,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.pptx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)01 An Overview of Business Intelligence, Analytics, and Data Science.docx
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)02 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)03 Descriptive Analytics II:Business Intelligence and Data Warehousing.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)04 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)05 Predictive Analytics II:Text, Web, and Social Media Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)06 Prescriptive Analytics:Optimization and Simulation.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)07 Big Data Concepts and Tools.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(教师手册,原书第4版)08 Future Trends, Privacy and Managerial Considerations in Analytics.doc
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 1 An Overview of Business Intelligence, Analytics, and Data Science.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 2 Descriptive Analytics I:Nature of Data, Statistical Modeling, and Visualization.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 3 Descriptive Analytics II:Business Intelligence and Data Warehousing.pdf
- 《商务智能:数据分析的管理视角 Business Intelligence, Analytics, and Data Science:A Managerial Perspective》教学资源(习题,原书第4版)chapter 4 Predictive Analytics I:Data Mining Process, Methods, and Algorithms.pdf